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Learning Objectives

 Understand the concept of

 Optimization Problem

 Convex Optimization Problem (CO)

 Briefly describe the following algorithms

 Gradient Descent Algorithm

 Formulate problems as CO and use solvers to solve 

them
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Optimization Problem: Definition

 Optimization Problem: Determine value of optimization 
variable within feasible region/set to optimize 
optimization objective

 Optimization variable 𝑥 ∈ ℝ𝑛

 Feasible region/set ℱ ⊂ ℝ𝑛

 Optimization objective 𝑓: ℱ → ℝ

 Optimal solution: 𝑥∗ = argmin
𝑥∈ℱ

𝑓(𝑥)

 Optimal objective value 𝑓∗ = min
𝑥∈ℱ

𝑓(𝑥) = 𝑓(𝑥∗)
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ



Optimization Problem: Example

 Example: Linear Regression

 Problem: Find 𝑎 such that 𝑦𝑖 ≈ 𝑎𝑥𝑖, ∀𝑖 = 1. . 3

 Variable 𝑎

 Feasible region ℝ

 Objective function 𝑓 𝑎 ?
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𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 2.1 3.98 7.0

min
𝑎

෍

𝑖=1

3

|𝑦𝑖 − 𝑎𝑥𝑖|

s.t. 𝑎 ∈ ℝ

min
𝑎

෍

𝑖=1

3

𝑦𝑖 − 𝑎𝑥𝑖
2

s.t. 𝑎 ∈ ℝ



Optimization Problem: How to Solve

 Many algorithms developed for special classes of 

optimization problems (i.e., when 𝑓(𝑥) and ℱ satisfy 

certain constraints)

 We will mainly cover the following classes in this course

 Convex optimization problem (CO)

 Linear Programming problem (LP)

 (Mixed) Integer Linear Programming problem (MILP)

 Many existing solvers and code packages available

 Cplex (LP, MILP), Gurobi (LP, MILP), Cvxopt (CO)
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Lazy Mode

 Formulate a problem as an optimization problem

 Identify which class the formulation belongs to

 Call the corresponding solver

 Map the solution back to the original problem

 Done!

1/15/2024Fei Fang7



Why Go Further?

 Learn how to identify which class the problem 

formulation belongs to

 Understand which formulations can be solved more 

efficiently

 Choose/Convert to the right formulation

 Open the black box to learn key ideas, useful for 

developing advanced solutions
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Outline

 Optimization Problem

 Convex Optimization Problem

1/15/2024Fei Fang9



Convex Optimization: Definition

 Convex Optimization Problem

 A special case of optimization problem that can be solved

efficiently

 An optimization problem whose optimization objective is a 

convex function and feasible region is a convex set
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ

where ℱ is a convex set and 𝑓 is a convex function



Convex Optimization: Definition

 Convex set

 Any convex combination of two points in the set is also in 

the set

 A set ℱ is convex if ∀𝑥, 𝑦 ∈ ℱ, ∀𝜃 ∈ 0,1 , 
z = 𝜃𝑥 + 1 − 𝜃 𝑦 ∈ ℱ
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Convex Optimization: Definition

 Convex function

 Value in the middle point is lower than average value

 Let ℱ be a convex set. A function 𝑓: ℱ → ℝ is convex in ℱ if 

∀𝑥, 𝑦 ∈ ℱ,∀𝜃 ∈ 0,1 ,
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓(𝑦)

 If ℱ = ℝ𝑛, we simply say 𝑓 is convex
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Convex Optimization: Which

 How to determine if a function is convex?

 Prove by definition

 Use properties

 Sum of convex functions is convex

 If 𝑓 𝑥 = σ𝑖 𝑤𝑖𝑓𝑖 𝑥 , 𝑤𝑖 ≥ 0, 𝑓𝑖 𝑥 convex, then 𝑓(𝑥) is 

convex

 Convexity is preserved under a linear transformation

 If 𝑓 𝑥 = 𝑔(𝐴𝑥 + 𝑏), 𝑔 convex, then 𝑓(𝑥) is convex

 If 𝑓 is a twice differentiable function of one variable, 𝑓 is 

convex on an interval 𝑎, 𝑏 ⊂ ℝ iff (if and only if) 

its second derivative 𝑓′′ 𝑥 ≥ 0 in 𝑎, 𝑏
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Poll 1

 Which of the following functions are convex 

functions of 𝑎?

 A: Only 𝑓1

 B: Only 𝑓2

 C: Both 𝑓1 and 𝑓2

 D: Neither 𝑓1 nor 𝑓2

 E: I don’t know
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𝑓1 𝑎 = ෍

𝑖=1

3

|𝑦𝑖 − 𝑎𝑥𝑖| 𝑓2 𝑎 = ෍

𝑖=1

3

𝑦𝑖 − 𝑎𝑥𝑖
2

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 2.1 3.98 7.0



Convex Optimization Problem: Which

 Which sets are convex?

 Prove by definition

 Check known convex sets

 Region defined by linear inequalities, Unit ball

 Use properties

 Intersection of convex sets is convex: ℱ =∩𝑖 ℱ𝑖 is convex if ℱ𝑖 is 

convex, ∀𝑖
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Poll 2

 Which of the following are convex optimization

problems?

 A: Only 𝑃1

 B: Only 𝑃2

 C: Both 𝑃1 and 𝑃2

 D: Neither 𝑃1 nor 𝑃2

 E: I don’t know
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min
𝑎

෍

𝑖=1

3

|𝑦𝑖 − 𝑎𝑥𝑖|

s.t. 2𝑎 + 1 ≤ 3

min
𝑎

෍

𝑖=1

3

𝑦𝑖 − 𝑎𝑥𝑖
2

s.t. 𝑎 ≥ 3

𝑃1 𝑃2

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 2.1 3.98 7.0



Convex Optimization: Local Optima=Global Optima

 Given an optimization problem, a point 𝑥 ∈ ℝ𝑛 is 

globally optimal if 𝑥 ∈ ℱ and ∀𝑦 ∈ ℱ, 𝑓 𝑥 ≤ 𝑓 𝑦

 Given an optimization problem, a point 𝑥 ∈ ℝ𝑛 is 

locally optimal if 𝑥 ∈ ℱ and ∃𝑅 > 0 such that ∀𝑦: 𝑦 ∈
ℱ and 𝑥 − 𝑦 2 ≤ 𝑅, 𝑓 𝑥 ≤ 𝑓 𝑦

 Theorem 1: For a convex optimization problem, all 

locally optimal points are globally optimal
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min
𝑥

𝑓(𝑥)

s.t. 𝑥 ∈ ℱ



Convex Optimization: How to Solve

 For 𝑓: ℝ𝑛 → ℝ, gradient is the vector of partial 

derivatives

 A multi-variable generalization of the derivative

 Point in the direction of steepest increase in 𝑓
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Gradient Descent

 Gradient descent: iteratively update the value of 𝑥
 A simple algorithm for unconstrained optimization min

𝑥∈ℝ𝑛
𝑓(𝑥)

 Move towards a promising direction 

 (Informal) For convex and differentiable 𝑓 and small enough 𝛼, 

gradient descent converges to global optimum
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Algorithm: Gradient Descent

Input: function 𝑓, initial point 𝑥0, step size 𝛼 > 0

Initialize 𝑥 ← 𝑥0

Repeat

𝑥 ← 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
Until convergence



Gradient Descent: Example

1/15/2024Reference: Wikipedia; Berkeley CE19120



Gradient Descent: Remark

 Can also be used for nonconvex but continuous 

optimization

 Lead to local optima

1/15/2024Reference: Wikipedia; Berkeley CE19121



Convex Optimization: How to Solve

 Example solvers: fmincon (MATLAB), cvxpy (Python), 

cvxopt (Python), cvx (MATLAB)

1/15/202422 https://www.cvxpy.org/examples/basic/least_squares.html

With Python 3.7 and Cvxpy 1.1

𝑥𝑖 1.0 2.0 3.5

𝑦𝑖 2.1 3.98 7.0

min
𝑎

෍

𝑖=1

3

𝑦𝑖 − 𝑎𝑥𝑖
2

s.t. 𝑎 ∈ ℝ



Methods for Convex Optimization

 Unconstrained and differentiable
 Gradient Descent

 Find saddle point (set gradient to be 0)
 Closed form solution

 Newton’s Method (if twice differentiable)

 Constrained and differentiable
 Interior Point Method

 Karush–Kuhn–Tucker (KKT) conditions are sufficient and 
necessary. Apply Newton’s method or other methods.

 Non-differentiable
 𝜖-Subgradient Method

 Cutting Plane Method
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References and Additional Resources
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Convex Optimization: Additional Resources

 Textbook

 Convex Optimization, Chapters 1-4

Stephen Boyd and LievenVandenberghe

Cambridge University Press

https://web.stanford.edu/~boyd/cvxbook/

 Online course

 Stanford University, Convex Optimization I (EE 364A), 

taught by Stephen Boyd

 http://ee364a.stanford.edu/courseinfo.html

 https://youtu.be/McLq1hEq3UY
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Linear Program: Additional Resources

 Textbook
 Applied Mathematical Programming, Chapters 2-4

 By Bradley, Hax, and Magnanti (Addison-Wesley, 1977)

 http://web.mit.edu/15.053/www/AMP.htm

 Online course
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-251j-introduction-to-mathematical-programming-fall-
2009/index.htm

 Survey of existing software: 
https://www.informs.org/ORMS-Today/Public-
Articles/June-Volume-38-Number-3/Software-Survey-
Linear-Programming

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Optimization Problem: How to Solve

 Many algorithms developed for special classes of 
optimization problems (i.e., when 𝑓(𝑥) and ℱ satisfy 
certain constraints)
 Convex optimization problem (CO)

 Linear Programming problem (LP)

 (Mixed) Integer Linear Programming problem (MILP)

 Quadratic programming (QP), (Mixed) Integer Quadratic 
programming (MIQP), Semidefinite programming (SDP), Second-
order cone programming (SOCP), …

 Existing solvers and code packages for these problems
 Cplex (LP, MILP, QP), Gurobi (LP, MILP, MIQP), GLPK (LP, MILP), 

Cvxopt (CO), DSDP5 (SDP), MOSEK (QP, SOCP), Yalmip (SDP), 
…
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Convex Optimization: Which

 If 𝑓 is a twice continuously differentiable function of 𝑛
variables, 𝑓 is convex on ℱ iff its Hessian matrix of 

second partial derivatives is positive semidefinite on 

the interior of ℱ
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𝐻 is positive semidefinite in 𝑆 if ∀𝑥 ∈ 𝑆, ∀𝑧 ∈
ℝ𝑛, 𝑧𝑇𝐻(𝑥)𝑧 ≥ 0

𝐻 is positive semidefinite in ℝ𝑛 iff all eigenvalues 

of 𝐻 are non-negative

Alternatively, prove 𝑧𝑇𝐻 𝑥 𝑧 = σ𝑖 𝑔𝑖 𝑥, 𝑧
2



Gradient Descent: Advanced Material

 Gradient descent: iteratively update the value of 𝑥
 A simple algorithm for unconstrained optimization min

𝑥∈ℝ𝑛
𝑓(𝑥)

 Variants
 How to choose 𝑥0, e.g., 𝑥0 = 0

 How to update 𝛼, e.g., 𝛼𝑖+1 =
𝑥𝑖+1−𝑥𝑖 𝑇

(𝛻𝑥𝑓 𝑥𝑖+1 −𝛻𝑥𝑓 𝑥𝑖 )

𝛻𝑥𝑓 𝑥𝑖+1 −𝛻𝑥𝑓 𝑥𝑖
2

2

 How to define “convergence”, e.g., 𝑥𝑖+1 − 𝑥𝑖
2

≤ 𝜖
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Algorithm: Gradient Descent

Input: function 𝑓, initial point 𝑥0, step size 𝛼 > 0

Initialize 𝑥 ← 𝑥0

Repeat

𝑥 ← 𝑥 − 𝛼𝛻𝑥𝑓 𝑥
Until convergence
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