Artificial Intelligence Methods for Social Good Lecture I (Part II) Basics of Optimization

> 17-537 (9-unit) and 17-737 (12-unit) Fei Fang <u>feifang@cmu.edu</u>

Outline

- Optimization Problem
- Convex Optimization Problem

Learning Objectives

- Understand the concept of
 - Optimization Problem
 - Convex Optimization Problem (CO)
- Briefly describe the following algorithms
 - Gradient Descent Algorithm
- Formulate problems as CO and use solvers to solve them

Optimization Problem: Definition

 Optimization Problem: Determine value of optimization variable within feasible region/set to optimize optimization objective

 $\min_{x} f(x)$
s.t. $x \in \mathcal{F}$

- Optimization variable $x \in \mathbb{R}^n$
- Feasible region/set $\mathcal{F} \subset \mathbb{R}^n$
- Optimization objective $f: \mathcal{F} \to \mathbb{R}$
- Optimal solution: $x^* = \operatorname*{argmin}_{x \in \mathcal{F}} f(x)$

• Optimal objective value $f^* = \min_{x \in \mathcal{F}} f(x) = f(x^*)$

Optimization Problem: Example

x _i	1.0	2.0	3.5
${\mathcal Y}_i$	2.1	3.98	7.0

- Example: Linear Regression
 - Problem: Find a such that $y_i \approx ax_i$, $\forall i = 1..3$
 - Variable *a*
 - \blacktriangleright Feasible region $\mathbb R$
 - Objective function f(a)?

Optimization Problem: How to Solve

- Many algorithms developed for special classes of optimization problems (i.e., when f(x) and F satisfy certain constraints)
- We will mainly cover the following classes in this course
 - Convex optimization problem (CO)
 - Linear Programming problem (LP)
 - (Mixed) Integer Linear Programming problem (MILP)
- Many existing solvers and code packages available
 - Cplex (LP, MILP), Gurobi (LP, MILP), Cvxopt (CO)

Lazy Mode

- Formulate a problem as an optimization problem
- Identify which class the formulation belongs to
- Call the corresponding solver
- Map the solution back to the original problem
- Done!

Why Go Further?

- Learn how to identify which class the problem formulation belongs to
- Understand which formulations can be solved more efficiently
- Choose/Convert to the right formulation
- Open the black box to learn key ideas, useful for developing advanced solutions

Outline

- Optimization Problem
- Convex Optimization Problem

Convex Optimization: Definition

Convex Optimization Problem

- A special case of optimization problem that can be solved efficiently
- An optimization problem whose optimization objective is a convex function and feasible region is a convex set

$$\min_{x} f(x)$$

s.t. $x \in \mathcal{F}$

where ${\mathcal F}$ is a convex set and f is a convex function

Convex Optimization: Definition

Convex set

Any convex combination of two points in the set is also in the set

► A set
$$\mathcal{F}$$
 is convex if $\forall x, y \in \mathcal{F}, \forall \theta \in [0,1],$
 $z = \theta x + (1 - \theta)y \in \mathcal{F}$

Convex Optimization: Definition

Convex function

- Value in the middle point is lower than average value
- Let *F* be a convex set. A function *f*: *F* → ℝ is convex in *F* if $\forall x, y \in F, \forall \theta \in [0,1],$ $f(\theta x + (1 \theta)y) \leq \theta f(x) + (1 \theta)f(y)$
- If $\mathcal{F} = \mathbb{R}^n$, we simply say f is convex

Convex Optimization: Which

• How to determine if a function is convex?

- Prove by definition
- Use properties
 - Sum of convex functions is convex $\Box \operatorname{If} f(x) = \sum_{i} w_{i} f_{i}(x), w_{i} \geq 0, f_{i}(x) \text{ convex, then } f(x) \text{ is convex}$
 - Convexity is preserved under a linear transformation $\Box \operatorname{If} f(x) = g(Ax + b), g \operatorname{convex}, \operatorname{then} f(x) \operatorname{is convex}$
 - If f is a twice differentiable function of one variable, f is convex on an interval [a, b] ⊂ ℝ iff (if and only if) its second derivative f''(x) ≥ 0 in [a, b]

Poll I

- Which of the following functions are convex functions of *a*?
 - A: Only f_1
 - ▶ B: Only *f*₂
 - C: Both f_1 and f_2
 - D: Neither f_1 nor f_2
 - E: I don't know

x _i	1.0	2.0	3.5
y _i	2.1	3.98	7.0

$$f_1(a) = \sum_{i=1}^3 |y_i - ax_i| \qquad f_2(a) = \sum_{i=1}^3 (y_i - ax_i)^2$$

Convex Optimization Problem: Which

- Which sets are convex?
 - Prove by definition
 - Check known convex sets
 - Region defined by linear inequalities, Unit ball
 - Use properties
 - Intersection of convex sets is convex: $\mathcal{F} = \cap_i \mathcal{F}_i$ is convex if \mathcal{F}_i is convex, $\forall i$

Poll 2

- Which of the following are convex optimization problems?
 - A: Only P_1
 - B: Only P₂
 - C: Both P_1 and P_2
 - **D**: Neither P_1 nor P_2
 - E: I don't know

x _i	1.0	2.0	3.5
y _i	2.1	3.98	7.0

$$P_1$$

$$\min_{a} \sum_{i=1}^{3} |y_i - ax_i|$$
s.t. $2a + 1 \le 3$

$$P_2$$

$$\min_{a} \sum_{i=1}^{3} (y_i - ax_i)^2$$
s.t. $|a| \ge 3$

Convex Optimization: Local Optima=Global Optima

 $\min_{x} f(x)$
s.t. $x \in \mathcal{F}$

- Given an optimization problem, a point $x \in \mathbb{R}^n$ is globally optimal if $x \in \mathcal{F}$ and $\forall y \in \mathcal{F}$, $f(x) \leq f(y)$
- Given an optimization problem, a point $x \in \mathbb{R}^n$ is locally optimal if $x \in \mathcal{F}$ and $\exists R > 0$ such that $\forall y: y \in \mathcal{F}$ and $\|x - y\|_2 \leq R, f(x) \leq f(y)$
- Theorem I: For a convex optimization problem, all locally optimal points are globally optimal

Convex Optimization: How to Solve

- For $f: \mathbb{R}^n \to \mathbb{R}$, gradient is the vector of partial derivatives
 - > A multi-variable generalization of the derivative
 - > Point in the direction of steepest increase in f

Gradient Descent

• Gradient descent: iteratively update the value of x

- A simple algorithm for unconstrained optimization $\min_{x \in \mathbb{R}^n} f(x)$
- Move towards a promising direction

Algorithm: Gradient Descent Input: function f, initial point x_0 , step size $\alpha > 0$ Initialize $x \leftarrow x_0$ Repeat $x \leftarrow x - \alpha \nabla_x f(x)$ Until convergence

• (Informal) For convex and differentiable f and small enough α , gradient descent converges to global optimum

Gradient Descent: Example

1/15/2024

20

D

Gradient Descent: Remark

- Can also be used for nonconvex but continuous optimization
 - Lead to local optima

Convex Optimization: How to Solve

 Example solvers: fmincon (MATLAB), cvxpy (Python), cvxopt (Python), cvx (MATLAB)

 x_i 1.02.03.5 y_i 2.13.987.0

$$\min_{a} \sum_{i=1}^{3} (y_i - ax_i)^2$$

s.t. $a \in \mathbb{R}$

import cyxpy as cp import numpy as np x = np.array([1.0, 2.0, 3.5])y = np.array([2.1, 3.98, 7.0])# Define and solve the CVXPY problem. a = cp.Variable(1) cost = cp.sum_squares(y-a * x) prob = cp.Problem(cp.Minimize(cost)) prob.solve() # Print result. print("\nThe optimal value is", prob.value) print("The optimal a is", a.value)

With Python 3.7 and Cvxpy 1.1

https://www.cvxpy.org/examples/basic/least_squares.html

Methods for Convex Optimization

- Unconstrained and differentiable
 - Gradient Descent
 - Find saddle point (set gradient to be 0)
 - Closed form solution
 - Newton's Method (if twice differentiable)
- Constrained and differentiable
 - Interior Point Method
 - Karush–Kuhn–Tucker (KKT) conditions are sufficient and necessary. Apply Newton's method or other methods.
- Non-differentiable
 - ε-Subgradient Method
 - Cutting Plane Method

References and Additional Resources

Convex Optimization: Additional Resources

Textbook

Convex Optimization, Chapters 1-4
 Stephen Boyd and Lieven Vandenberghe
 Cambridge University Press
 https://web.stanford.edu/~boyd/cvxbook/

Online course

- Stanford University, Convex Optimization I (EE 364A), taught by Stephen Boyd
 - http://ee364a.stanford.edu/courseinfo.html
 - https://youtu.be/McLqIhEq3UY

Linear Program: Additional Resources

- Textbook
 - Applied Mathematical Programming, Chapters 2-4
 - By Bradley, Hax, and Magnanti (Addison-Wesley, 1977)
 - http://web.mit.edu/15.053/www/AMP.htm
- Online course
 - <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-251j-introduction-to-mathematical-programming-fall-2009/index.htm</u>
- Survey of existing software: <u>https://www.informs.org/ORMS-Today/Public-</u> <u>Articles/June-Volume-38-Number-3/Software-Survey-</u> <u>Linear-Programming</u>

Backup Slides

Optimization Problem: How to Solve

- Many algorithms developed for special classes of optimization problems (i.e., when f(x) and \mathcal{F} satisfy certain constraints)
 - Convex optimization problem (CO)
 - Linear Programming problem (LP)
 - (Mixed) Integer Linear Programming problem (MILP)
 - Quadratic programming (QP), (Mixed) Integer Quadratic programming (MIQP), Semidefinite programming (SDP), Secondorder cone programming (SOCP), ...
- Existing solvers and code packages for these problems
 - Cplex (LP, MILP, QP), Gurobi (LP, MILP, MIQP), GLPK (LP, MILP), Cvxopt (CO), DSDP5 (SDP), MOSEK (QP, SOCP), Yalmip (SDP), ...

Convex Optimization: Which

If f is a twice continuously differentiable function of n variables, f is convex on F iff its Hessian matrix of second partial derivatives is positive semidefinite on the interior of F

$$\mathbf{H} = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ dots & dot$$

H is positive semidefinite in *S* if $\forall x \in S, \forall z \in \mathbb{R}^n, z^T H(x) z \ge 0$

H is positive semidefinite in \mathbb{R}^n iff all eigenvalues of *H* are non-negative

Alternatively, prove $z^T H(x) z = \sum_i (g_i(x, z))^2$

Gradient Descent: Advanced Material

- Gradient descent: iteratively update the value of x
 - A simple algorithm for unconstrained optimization $\min_{x \in \mathbb{R}^n} f(x)$

Algorithm: Gradient Descent

Input: function f, initial point x_0 , step size $\alpha > 0$

```
Initialize x \leftarrow x_0
Repeat
x \leftarrow x - \alpha \nabla_x f(x)
Until convergence
```

- Variants
 - How to choose x₀, e.g., x₀ = 0
 How to update \$\alpha\$, e.g., \$\alpha^{i+1} = \frac{(x^{i+1}-x^i)^T (\nabla_x f(x^{i+1}) \nabla_x f(x^i))}{\|\nabla_x f(x^{i+1}) \nabla_x f(x^i)\|_2^2}\$
 How to define "convergence", e.g., \$\|x^{i+1} x^i\|_2 \leq \epsilon\$