Reminder

- Confirm course project group members
 - Due 1/23, 10pm
- Online Homework 0 (HW0)
 - Required, but worth zero points, Due 1/23, 10 pm
- Paper Reading Assignment I (PRAI)
 - Due 1/25, 10 pm
- Project proposal
 - Due 1/30, 10pm

Artificial Intelligence Methods for Social Good Lecture 3:

Case Study: Al for Wildlife Corridor Design

17-537 (9-unit) and 17-737 (12-unit) Fei Fang

feifang@cmu.edu

1/18/2024

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

Learning Objectives

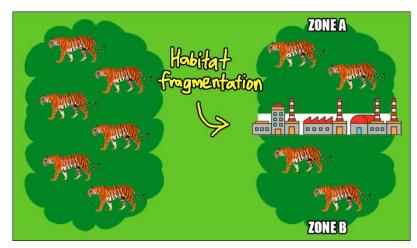
- Briefly describe
 - Challenges in wildlife corridor design
 - MILP-based solution for wildlife corridor design
 - Methodology of applying the solution to a specific case and evaluation criteria
- Write down general constraints for network flow problems

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

Motivation

Wildlife habitat diminished and fragmented

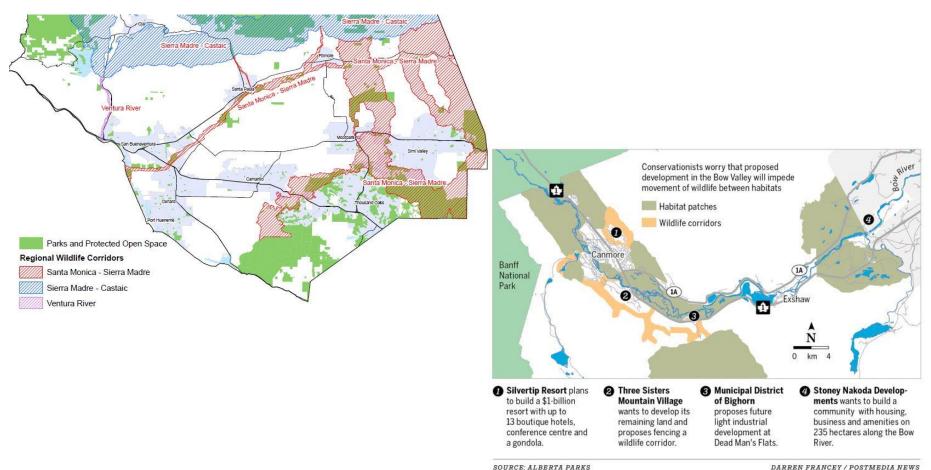


Motivation

- Isolated protected areas are not enough for longterm maintenance of biodiversity
- ▶ To create/enhance connectivity: build and protect wildlife corridors

Motivation

Question: Where to build wildlife corridor?



DARREN FRANCEY / POSTMEDIA NEWS

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

Problem Statement

- Wildlife distribution: High density in core areas
 - Core areas of different species may overlap
- Wildlife movement:
 - May move in any direction, heterogeneous difficulty
 - Each pixel associated with a resistance cost
 - Path of higher total resistance cost is more difficult to walk through
- Build a corridor: purchase parcels of land to connect protected areas
 - Parcels purchased + existing protected area = conservation network

Problem Statement

- Single-minded goal: build corridors to connect core areas of a species and minimize total resistance cost
 - Connect core areas: exist a path that falls entirely within the conservation network

Limitations

- Economic cost is not considered
- Multiple species are not considered

▶ Ideally:

- Connect core areas for all species
- Low total resistance cost (cumulative resistance)
- Low expenditure on purchasing the parcels (expenditure)

Problem Statement

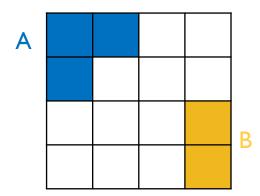
- Problem Statement: Budget constrained corridor design for multiple species
 - Set limit on expenditure
 - Minimize cumulative resistance
 - Ensure connectivity between each pair of core areas of each species

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

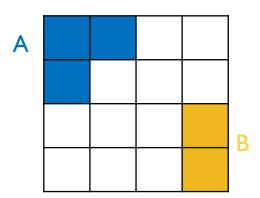
Model

- ▶ A raster of grid cells
- ▶ A core area: a set of contiguous raster cells



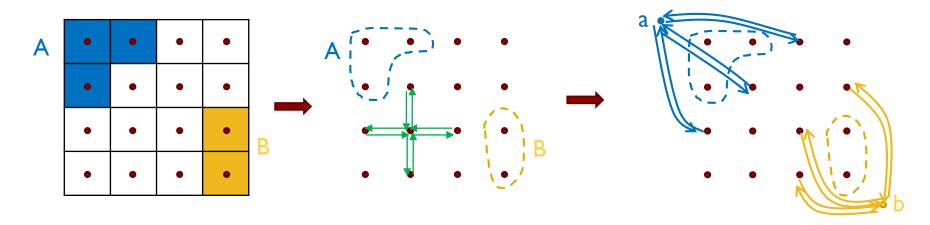
Graph Model for Corridor Design Problem

- ▶ Nodes: a cell that can be purchased (not in core areas)
- Edges: connecting neighboring cells
- Additional nodes: virtual nodes for core areas
- Additional edges: core areas and their neighboring cells

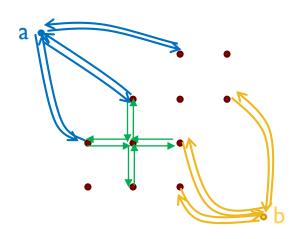


Graph Model for Corridor Design Problem

- Nodes: a cell that can be purchased (not in core areas)
- Edges: connecting neighboring cells
- Additional nodes: virtual nodes for core areas
- Additional edges: core areas and their neighboring cells



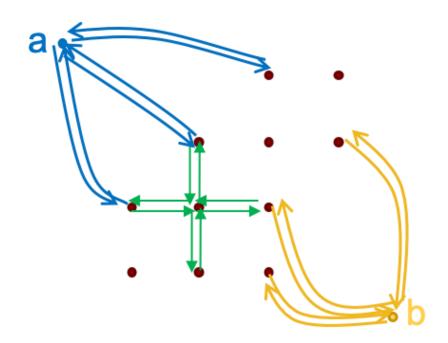
Graph Model for Corridor Design Problem



- \blacktriangleright For each node v
 - ightharpoonup Acquisition cost c(v)
 - Resistance value $r^s(v)$ for species s
 - Special case: $c(a) = c(b) = 0, r^{s}(a) = r^{s}(b) = 0$
- Connectivity requirements: $P^s = \{(a_1, b_1); (a_2, b_2); \dots\}$
 - Pairs of (virtual) nodes of species s

Model

 Corridor design: select a subset of nodes on the graph to ensure connectivity between core areas



Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

- \blacktriangleright Optimization Problem for Single Species s
 - MILPI

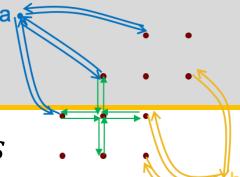
Objective function: Total cumulative resistance of best paths for all pairs for species *s*

Variable x_v : Whether or not to select (i.e., purchase or acquire) node v

Budget constraint

Some constraints to ensure connectivity

Recall: P^S : the set of all pairs of core areas for species S Acquisition cost for node V: C(V)



- \blacktriangleright Optimization Problem for Single Species s
 - MILPI

 $R_p^{\mathcal{S}}$ represents the cumulative resistance of best path linking core area pair p for species s

$$R^{s}(B) \triangleq \min_{x,\dots} \sum_{p \in P^{s}} R_{p}^{s} \qquad ----$$

Objective function: Total cumulative resistance of best paths for all pairs for species *s*

s.t.
$$x_v \in \{0,1\}, \forall v \in V$$

$$\sum_{v \in V} c(v)x_v \le B$$

$$\prod_{sp}, \forall p \in P^s$$

Variable x_v : Whether or not to select (i.e., purchase or acquire) node v

Budget constraint

 Π_{sp} represents a set of constraints that ensures there is a path linking p for species s

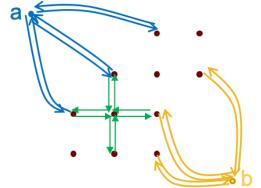
Some constraints to ensure connectivity

Recall: P^S : the set of all pairs of core areas for species S Acquisition cost for node V: C(V)

Let p = (a, b), then the constraints are

 Π_{sp} represents a set of constraints that ensures there is a path linking p for species s

Define new variable $y_e^{sp} \in \{0,1\}$ to represent whether edge e is on the best path that connects the pair p of species s $\delta^-(v) \triangleq \text{incoming edges for } v$ $\delta^+(v) \triangleq \text{outgoing edges for } v$



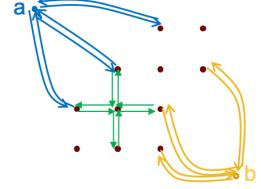
Connecting path can only traverse selected nodes

Flow conservation

Π_{sp} represents a set of constraints that ensures there is a path linking p for species s

Define new variable $y_e^{sp} \in \{0,1\}$ to represent whether edge e is on the best path that connects the pair p of species s $\delta^-(v) \triangleq \text{incoming edges for } v$ $\delta^+(v) \triangleq \text{outgoing edges for } v$

Let p = (a, b), then the constraints are



$$\sum_{e \in \delta^-(v)} y_e^{sp} \leq x_v, \forall v \in V \backslash \{a,b\} \qquad \qquad \text{Connecting path can only traverse selected nodes}$$

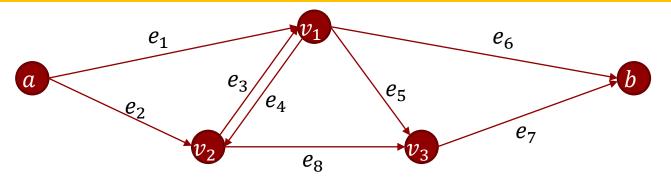
$$\sum_{e \in \delta^+(a)} y_e^{sp} = \sum_{e \in \delta^-(b)} y_e^{sp} = 1$$
 Flow conservation
$$\sum_{e \in \delta^+(v)} y_e^{sp} = \sum_{e \in \delta^-(v)} y_e^{sp}, \forall v \in V \backslash \{a,b\}$$

$$y_e^{sp} \in \{0,1\}$$

Example for Flow Constraints

$$\sum_{e \in \delta^+(a)} y_e^{sp} = \sum_{e \in \delta^-(b)} y_e^{sp} = 1$$

$$\sum_{e \in \delta^+(v)} y_e^{sp} = \sum_{e \in \delta^-(v)} y_e^{sp}, \forall v \in V \setminus \{a, b\}$$



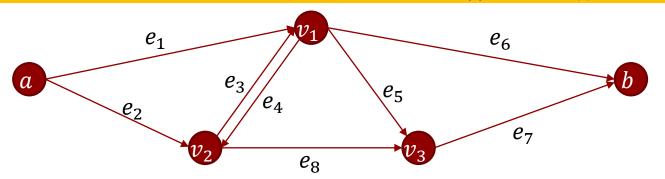
- ▶ $y_e \in \{0,1\}$: whether or not e is on the selected path
- For any path connecting a, b that does not traverse the same edge twice, the corresponding y_e satisfy:

For any y that satisfy these constraints, it corresponds to a path connecting a,b

Example for Flow Constraints

$$\sum_{e \in \delta^+(a)} y_e^{sp} = \sum_{e \in \delta^-(b)} y_e^{sp} = 1$$

$$\sum_{e \in \delta^+(v)} y_e^{sp} = \sum_{e \in \delta^-(v)} y_e^{sp}, \forall v \in V \setminus \{a, b\}$$



- ▶ $y_e \in \{0,1\}$: whether or not e is on the selected path
- For any path connecting a, b that does not traverse the same edge twice, the corresponding y_e satisfy:

$$y_{e_1}+y_{e_2}=1$$
 (one edge goes out of node a) $y_{e_6}+y_{e_7}=1$ (one edge goes into node b) $y_{e_1}+y_{e_3}=y_{e_4}+y_{e_5}+y_{e_6}$ (if there is an edge (or 2) goes into node v_1 , there must be an edge (or 2) goes out of node v_1) $y_{e_2}+y_{e_4}=y_{e_3}+y_{e_3},y_{e_5}+y_{e_8}=y_{e_6}+y_{e_7}$

For any y that satisfy these constraints, it corresponds to a path connecting a,b

Poll I

- Given directed graph G = (V, E), each node representing a city. A company needs to send K cellphones from city S to city d. It may send the cellphones through multiple paths. Let y_e be the number of cellphones sent through edge $e \in E$. Let $\delta^-(v)$ and $\delta^+(v)$ denote the set of incoming and outgoing edges for $v \in V$. Which ones of the following are necessary constraints for y_e ?
 - $A: \sum_{e \in \delta^+(s)} y_e = K$
 - $\triangleright B: \sum_{e \in \delta^{-}(d)} y_e = K$
 - $ightharpoonup C: \sum_{e \in \delta^+(v)} y_e = K, \forall v \in V$

 - $E: \sum_{e \in \delta^+(v)} y_e = \sum_{e \in \delta^-(v)} y_e , \forall v \in V \setminus \{s, d\}$
 - F: I don't know

- Additional constraints and simplifications for Π_{sp}
 - If some nodes are not admissible for pair p of species s, e.g., slope is too high for species s to move:

Relax binary constraint on y_e^{sp} will not change the solution according to known results in network flow (ILP=LP)

- Additional constraints and simplifications for Π_{sp}
 - If some nodes are not admissible for pair p of species s, e.g., slope is too high for species s to move:

$$y_e^{sp} = 0$$
, $\forall e = (u, v)$ where $adm_v^{sp} = 0$ or $adm_u^{sp} = 0$

Relax binary constraint on y_e^{sp} will not change the solution according to known results in network flow (ILP=LP)

$$y_e^{sp} \in [0,1]$$

 $ightharpoonup R_p^s$ represents the cumulative resistance of best path linking core area pair p for species s

Recall:

 $y_e^{sp} \in \{0,1\}$ represents whether edge e is on the best path that connects the pair p of species s $r^s(v)$ represents resistance value of node v for species s

QI: Is it equivalent to $R_p^s = \sum_{v \in V_p} r^s(v)$ where V_p is the set of nodes on the path connecting pair p?

Q2: Is it equivalent to $\sum_{v \in V} r^s(v) x_v$?

 $ightharpoonup R_p^s$ represents the cumulative resistance of best path linking core area pair p for species s

Recall:

 $y_e^{sp} \in \{0,1\}$ represents whether edge e is on the best path that connects the pair p of species s $r^s(v)$ represents resistance value of node v for species s

$$R_p^s = \sum_{e=(u,v)\in E} \frac{r^s(u) + r^s(v)}{2} y_e^{sp}$$

Remark I:This is equivalent to $R_p^s = \sum_{v \in V_p} r^s(v)$ where V_p is the set of nodes on the path connecting pair p. However, V_p is not known ahead of time. So we cannot write it in this form Remark 2:This can be different from $\sum_{v \in V} r^s(v) x_v$. To ensure that they are equivalent, we need the assumption that a node not on the path of p will never be selected. This assumption holds if we are considering the optimization problem with single species and a single pair of core areas. When we consider more pairs or more species, they are not the same.

Putting everything together (MILPI)

$$R^{s}(B)\triangleq \min_{x,y}\sum_{p\in P^{S}}\sum_{e=(u,v)\in E}\frac{r^{s}(u)+r^{s}(v)}{2}y_{e}^{sp}$$
 s.t.
$$x_{v}\in\{0,1\}, \forall v\in V$$

$$\sum_{e\in\delta^{-}(v)}(v)x_{v}\leq B$$

$$\sum_{e\in\delta^{-}(v)}y_{e}^{sp}\leq x_{v}, \forall v\in V\backslash\{a,b\}$$

$$\sum_{e\in\delta^{+}(a)}y_{e}^{sp}=\sum_{e\in\delta^{-}(b)}y_{e}^{sp}=1$$

$$\sum_{e\in\delta^{+}(v)}y_{e}^{sp}=\sum_{e\in\delta^{-}(v)}y_{e}^{sp}, \forall v\in V\backslash\{a,b\}$$

$$y_{e}^{sp}=0, \forall e=(u,v) \text{ where } adm_{v}^{sp}=0 \text{ or } adm_{u}^{sp}=0$$

$$y_{e}^{sp}\in[0,1], \forall e\in E, \forall p\in P^{s}$$

Approach – Two Species

- lacktriangle Optimization Problem for Two Species g and w
 - Updated objective function of MILPI
 - $ightharpoonup \alpha$ controls the balance between the two species

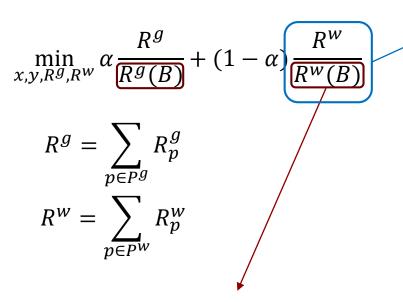
Normalization used to avoid comparison in completely different scales

(Recall MILPI) $R^{s}(B) \triangleq \min_{x,...} \sum_{p \in P^{S}} R_{p}^{s}$ s.t. $x_{v} \in \{0,1\}, \forall v \in V$ $\sum_{v \in V} c(v)x_{v} \leq B$ $\Pi_{sp}, \forall p \in P^{s}$

Pre-computed. Optimal value of optimization problem for single species *w*

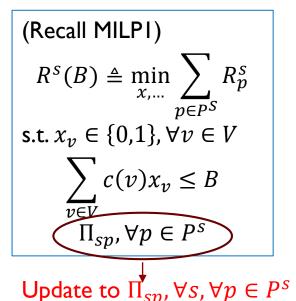
Approach – Two Species

- lacktriangle Optimization Problem for Two Species g and w
 - Updated objective function of MILPI
 - $\triangleright \alpha$ controls the balance between the two species



Pre-computed. Optimal value of optimization problem for single species *w*

Normalization used to avoid comparison in completely different scales



Approach – Multiple Species

- Optimization Problem for Multiple Species
 - Extend the objective function for two species to multiple species
 - $\triangleright \ \alpha$ controls the balance between the species

Approach – Multiple Species

- Optimization Problem for Multiple Species
 - Extend the objective function for two species to multiple species
 - $\triangleright \alpha$ controls the balance between the species

$$\min_{x,y,R} \sum_{i} \alpha_{i} \frac{R^{i}}{R^{i}(B)}$$

Boundary Solutions

- Minimum budget to ensure connectivity
 - Slight modifications to MILPI

(Recall MILPI)
$$R^{s}(B) \triangleq \min_{x,...} \sum_{p \in P^{S}} R_{p}^{s}$$
s.t. $x_{v} \in \{0,1\}, \forall v \in V$

$$\sum_{v \in V} c(v)x_{v} \leq B$$

$$\Pi_{sp}, \forall p \in P^{s}$$

- Minimum budget to ensure connectivity
 - Slight modifications to MILPI

$$\min_{x,\dots} \sum_{v \in V} c(v) x_v$$
 s.t.
$$x_v \in \{0,1\}, \forall v \in V$$

$$\Pi_{sp}, \forall p \in P^s$$

(Recall MILPI)
$$R^{s}(B) \triangleq \min_{x,...} \sum_{p \in P^{s}} R_{p}^{s}$$
s.t. $x_{v} \in \{0,1\}, \forall v \in V$

$$\sum_{v \in V} c(v)x_{v} \leq B$$

$$\Pi_{sp}, \forall p \in P^{s}$$

Minimum cumulative resistance if no budget constraint

Compute Minimum Cumulative Resistance

- For each s
 - For each $p \in P^s$
 - Compute R_p^s :

• Compute $\underline{R^s} = \sum_{p} R_p^s$

Recall: Special case: c(a) = c(b) = 0, $r^s(a) = r^s(b) = 0$

Minimum cumulative resistance if no budget constraint

Compute Minimum Cumulative Resistance

- For each s
 - For each $p \in P^s$
 - Compute R_p^s : If p=(a,b), then find shortest path from a to b on constructed graph where distance is defined as $\frac{r^s(u)+r^s(v)}{2}$ for any edge e=(u,v). R_p^s is the length of the shortest path.
- Compute $\underline{R}^s = \sum_p R_p^s$

Recall: Special case: c(a) = c(b) = 0, $r^s(a) = r^s(b) = 0$

- Minimum budget solution among the ones with minimum cumulative resistance
 - First find minimum cumulative resistance R^s
 - Then make slight modifications to MILPI

(Recall MILPI)
$$R^{s}(B) \triangleq \min_{x,...} \sum_{p \in P^{s}} R_{p}^{s}$$
s.t. $x_{v} \in \{0,1\}, \forall v \in V$

$$\sum_{v \in V} c(v)x_{v} \leq B$$

$$\Pi_{sp}, \forall p \in P^{s}$$

- Minimum budget solution among the ones with minimum cumulative resistance
 - First find minimum cumulative resistance R^s
 - Then make slight modifications to MILPI

$$\min_{x,\dots} \sum_{v \in V} c(v) x_v$$
 s.t.
$$x_v \in \{0,1\}, \forall v \in V$$

$$\Pi_{sp}, \forall p \in P^s$$

$$\sum_{p \in P^S} R_p^s \leq \underline{R}^s$$

(Recall MILPI)
$$R^{s}(B) \triangleq \min_{x,...} \sum_{p \in P^{S}} R_{p}^{s}$$
s.t. $x_{v} \in \{0,1\}, \forall v \in V$

$$\sum_{v \in V} c(v)x_{v} \leq B$$

$$\Pi_{sp}, \forall p \in P^{s}$$

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

- Wolverines and Grizzly Bears in Western Montana
 - Low population, concentrated
 - Yellowstone National Park, Bob Marshall Wilderness Complex
 - ▶ 12.8 wolverines across 3 mountain ranges
 - ▶ 48 grizzly bears in 9900-km² zone

https://www.pinterest.com/pin/488429522063700417/

https://en.wikipedia.org/wiki/Grizzly_bear#/media/File:Grizzlybear55.jpg

- Wolverines and Grizzly Bears in Western Montana
 - Different habitat requirements
 - Habitats partially overlap
 - Different capability of movement

- Lands being considered
 - Public area (held by National Parks, U.S. Forest Service etc)
 - Tribal lands
 - Private lands (held by NGOs, timber companies, individuals etc)

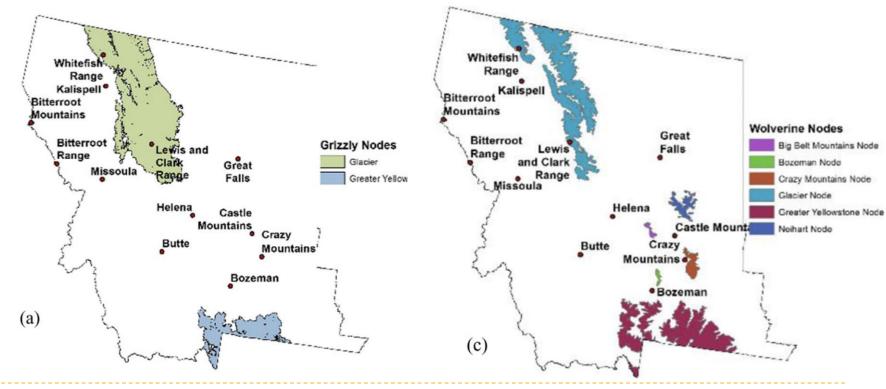
Input for the Model / Data source

- Western Montana, 1000m grid
- Acquisition cost
 - ▶ Tax records
 - Information on conserved lands
 - Other information: water body, urban parcel, etc
 - Gap between model and practice: a parcel is not a set of cells
 - Estimated acquisition cost: area-weighted sum of all the parcel values in the cell (using ArcGIS)

Resistance

- Geographical information and other landscape features
 - □ Grizzly bears: vegetation, human development, road density
 - □ Wolverines: snow cover, housing development, forest edge
- Estimate resistance: Follow established method in conservation

- Core areas
 - Grizzly bears: Northern Continental Divide Ecosystem and Greater Yellowstone Ecosystem
 - Wolverines: use habitat rule to identify core areas



Computation

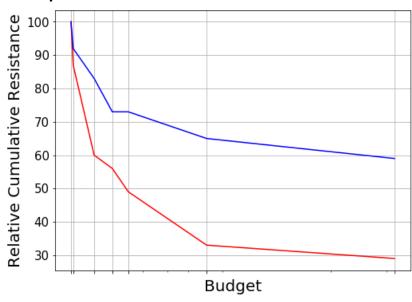
- Pruning (could be lossy), i.e., exclude cells that
 - Could not be made passable
 - Very far from any reasonable pathway
 - If included in the path, will lead to a high cumulative resistance
- ▶ 42065 cells
- Solve MILP using CPLEX, run on cluster
 - ▶ 5-40 hours of computer time

Results

- Provide insights, suggestions, visualizations to assist decision makers
 - Boundary Solutions
 - Minimum budget to ensure connectivity: \$2.9M (high cumulative resistance)
 - □ Least-resistance paths: \$31.8M expenditure (cumulative resistance is 29% and 59% of the min-budget design for grizzly bear and wolverine separately)

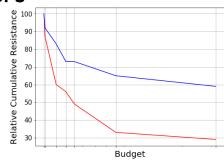
Results

- Provide insights, suggestions, visualizations to assist decision makers
 - Fix $\alpha = 0.5$, examine tradeoff between budget and cumulative resistance
 - ☐ Find "Elbow" point



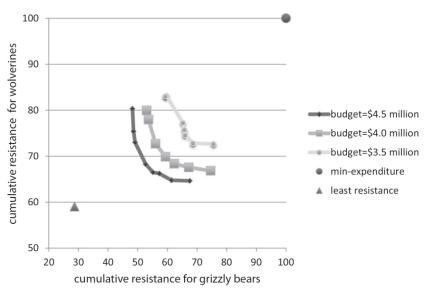
Poll 2

- Which ones of the following are true about the "elbow" point in the tradeoff plot of budget and cumulative resistance?
 - A:When budget is above this point, increase in budget does not lead to a significant reduction in cumulative resistance (compared to when budget is below this point)
 - B: Can be found by linking the first and last point to get a line, and check which point is farthest from this line
 - C: Is the ideal solution for wildlife corridor design problem
 - D: Can be a suggested solution to policy makers
 - E: I don't know



Results

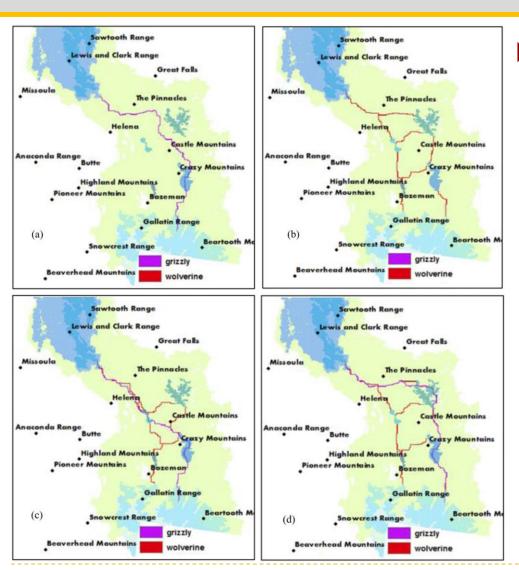
- Provide insights, suggestions, visualizations to assist decision makers
 - ightharpoonup Fix budget, plot cumulative resistance of two species with varying lpha
 - ☐ Find "Elbow" point
 - Difference across species: societal concerns and need for connectivity



Evaluation

- Evaluate the advantage of optimizing jointly
- Compare against separate single-species corridor design
- Same total budget, compare cumulative resistance for both species
 - ▶ \$4M for single-species corridor design for each species, get 67% and 40% of relative cumulative resistance for grizzly bear and wolverine
 - ▶ \$8M for two-species corridor design with α = 0.5, get 65% and 33%
 - What's missing here?

Poll 3



- Compare the two results in the lower half. They correspond to different value of α (importance of grizzly bears). Which one corresponds to a higher value of α ?
 - A: Lower Left
 - B: Lower Right
 - C: I don't know

Outline

- Wildlife Corridor Design
 - Motivation
 - Problem Statement
 - Model
 - Approach
 - Case Study
- Discussion

Discussion

- Heterogeneity: What if different core area pairs have different importance?
- Uncertainty in input: what if estimated resistance is not accurate?
- Uncertainty in acquisition: what if the purchase of a patch may fail?
- What if estimated resistance is not additive?
- How to reduce the runtime?
- Brainstorming: How can AI be used for protecting wildlife habitat?

Discussion

What are the other potential ways to use AI for wildlife conservation?

References and Additional Resources

58 Fei Fang 1/18/2024

Reference and Related Work

- ► <u>Trade-offs and efficiencies in optimal budget-constrained</u> <u>multispecies corridor networks</u>
 - Bistra Dilkina, Rachel Houtman, Carla P. Gomes, Claire A. Montgomery, Kevin S. McKelvey, Katherine Kendall, Tabitha A. Graves, Richard Bernstein, Michael K. Schwartz
- Solving Connected Subgraph Problems in Wildlife Conservation
 - Bistra Dilkina & Carla P. Gomes
- Robust Network Design for Multispecies Conservation
 - Ronan Le Bras, Bistra Dilkina, Yexiang Xue, Carla P. Gomes, Kevin
 S. McKelvey, Michael K. Schwartz, Claire A. Montgomery
- Spatial conservation prioritization: quantitative methods and computational tools. Moilanen et al. 2009.