Reminder

- Confirm course project group members
- Due I/23, IOpm
- Online Homework 0 (HW0)
- Required, but worth zero points, Due $\mathrm{I} / 23,10 \mathrm{pm}$
- Paper Reading Assignment I (PRAI)
- Due I/25, 10 pm
- Project proposal
- Due I/30, IOpm

Artificial Intelligence Methods for Social Good

Lecture 3:

Case Study:AI for Wildlife Corridor Design

$$
\begin{gathered}
\text { 17-537 (9-unit) and 17-737 (12-unit) } \\
\text { Fei Fang } \\
\text { feifang@cmu.edu }
\end{gathered}
$$

Outline

- Wildlife Corridor Design
- Motivation
, Problem Statement
- Model
- Approach
- Case Study
- Discussion

Learning Objectives

- Briefly describe
- Challenges in wildlife corridor design
- MILP-based solution for wildlife corridor design
- Methodology of applying the solution to a specific case and evaluation criteria
- Write down general constraints for network flow problems

Outline

- Wildlife Corridor Design
- Motivation
- Problem Statement
- Model
- Approach
- Case Study
- Discussion

Motivation

- Wildlife habitat diminished and fragmented

Motivation

- Isolated protected areas are not enough for longterm maintenance of biodiversity
- To create/enhance connectivity: build and protect wildlife corridors

Motivation

- Question:Where to build wildlife corridor?

Outline

- Wildlife Corridor Design
- Motivation
- Problem Statement
- Model
- Approach
- Case Study
- Discussion

Problem Statement

- Wildlife distribution: High density in core areas
- Core areas of different species may overlap
- Wildlife movement:
- May move in any direction, heterogeneous difficulty
- Each pixel associated with a resistance cost
- Path of higher total resistance cost is more difficult to walk through
- Build a corridor: purchase parcels of land to connect protected areas
- Parcels purchased + existing protected area = conservation network

Problem Statement

- Single-minded goal: build corridors to connect core areas of a species and minimize total resistance cost
- Connect core areas: exist a path that falls entirely within the conservation network
- Limitations
- Economic cost is not considered
- Multiple species are not considered
- Ideally:
- Connect core areas for all species
- Low total resistance cost (cumulative resistance)
- Low expenditure on purchasing the parcels (expenditure)

Problem Statement

- Problem Statement: Budget constrained corridor design for multiple species
- Set limit on expenditure
- Minimize cumulative resistance
- Ensure connectivity between each pair of core areas of each species

Outline

- Wildlife Corridor Design
- Motivation
, Problem Statement
- Model
- Approach
- Case Study
- Discussion

Model

- A raster of grid cells
- A core area: a set of contiguous raster cells

Graph Model for Corridor Design Problem

- Nodes: a cell that can be purchased (not in core areas)
- Edges: connecting neighboring cells
- Additional nodes: virtual nodes for core areas
- Additional edges: core areas and their neighboring cells

Graph Model for Corridor Design Problem

- Nodes: a cell that can be purchased (not in core areas)
- Edges: connecting neighboring cells
- Additional nodes: virtual nodes for core areas
- Additional edges: core areas and their neighboring cells

Graph Model for Corridor Design Problem

- For each node v
- Acquisition cost $c(v)$
- Resistance value $r^{s}(v)$ for species s
- Special case: $c(a)=c(b)=0, r^{s}(a)=r^{s}(b)=0$
- Connectivity requirements: $P^{s}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right) ; \ldots\right\}$
- Pairs of (virtual) nodes of species s
- Corridor design: select a subset of nodes on the graph to ensure connectivity between core areas

Outline

- Wildlife Corridor Design
- Motivation
, Problem Statement
- Model
- Approach
- Case Study
- Discussion

Approach - Single Species

- Optimization Problem for Single Species s - MILPI

Objective function:Total cumulative resistance of best paths for all pairs for species S

Variable x_{v} :Whether or not to select (i.e., purchase or acquire) node v

Budget constraint

Some constraints to ensure connectivity

Recall: P^{S} : the set of all pairs of core areas for species s
Acquisition cost for node $v: c(v)$

Approach - Single Species

- Optimization Problem for Single Species s - MILPI
R_{p}^{S} represents the cumulative resistance of best path linking core area pair p for species s

$$
R^{S}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{S}} R_{p}^{S}
$$

Objective function:Total cumulative resistance of best paths for all pairs for species s
s.t. $x_{v} \in\{0,1\}, \forall v \in V$

Variable x_{v} :Whether or not to

Recall: P^{S} : the set of all pairs of core areas for species s
Acquisition cost for node $v: c(v)$

Approach - Single Species

- $\Pi_{s p}$ represents a set of constraints that ensures there is a path linking p for species s
Define new variable $y_{e}^{s p} \in\{0,1\}$ to represent whether edge e is on the best path that connects the pair p of species s $\delta^{-}(v) \triangleq$ incoming edges for v
$\delta^{+}(v) \triangleq$ outgoing edges for v
Let $p=(a, b)$, then the constraints are

Connecting path can only traverse selected nodes

Flow conservation

Approach - Single Species

- $\Pi_{s p}$ represents a set of constraints that ensures there is a path linking p for species s
Define new variable $y_{e}^{s p} \in\{0,1\}$ to represent whether edge e is on the best path that connects the pair p of species s $\delta^{-}(v) \triangleq$ incoming edges for v
$\delta^{+}(v) \triangleq$ outgoing edges for v
Let $p=(a, b)$, then the constraints are

$$
\begin{array}{cc}
\sum_{e \in \delta^{-}(v)} y_{e}^{s p} \leq x_{v}, \forall v \in V \backslash\{a, b\} & \begin{array}{c}
\text { Connecting path can only } \\
\text { traverse selected nodes }
\end{array} \\
\sum_{e \in \delta^{+}(a)} y_{e}^{s p}=\sum_{e \in \delta^{-}(b)} y_{e}^{s p}=1 & \text { Flow conservation } \\
\sum_{e \in \delta^{+}(v)} y_{e}^{s p}=\sum_{\substack{e \in \delta^{-}(v) \\
y_{e}^{s p} \in\{0,1\}}} y_{e}^{s p}, \forall v \in V \backslash\{a, b\}
\end{array}
$$

Example for Flow Constraints

$$
\begin{aligned}
& \sum_{e \in \delta^{+}(a)} y_{e}^{s p}=\sum_{e \in \delta^{-}(b)} y_{e}^{s p}=1 \\
& \sum_{n}=\sum_{n} m^{m e n}
\end{aligned}
$$

- $y_{e} \in\{0,1\}$: whether or not e is on the selected path
- For any path connecting a, b that does not traverse the same edge twice, the corresponding y_{e} satisfy:
- For any y that satisfy these constraints, it corresponds to a path connecting a, b

Example for Flow Constraints

$$
x_{n} x^{2}=\sum_{n}=2
$$

- $y_{e} \in\{0,1\}$: whether or not e is on the selected path
- For any path connecting a, b that does not traverse the same edge twice, the corresponding y_{e} satisfy:
$y_{e_{1}}+y_{e_{2}}=1$ (one edge goes out of node a)
$y_{e_{6}}+y_{e_{7}}=1$ (one edge goes into node b)
$y_{e_{1}}+y_{e_{3}}=y_{e_{4}}+y_{e_{5}}+y_{e_{6}}$ (if there is an edge (or 2) goes into node v_{1}, there must be an edge (or 2) goes out of node v_{1})
$y_{e_{2}}+y_{e_{4}}=y_{e_{3}}+y_{e_{8}}, y_{e_{5}}+y_{e_{8}}=y_{e_{6}}+y_{e_{7}}$
- For any y that satisfy these constraints, it corresponds to a path connecting a, b
- Given directed graph $G=(V, E)$, each node representing a city.A company needs to send K cellphones from city s to city d. It may send the cellphones through multiple paths. Let y_{e} be the number of cellphones sent through edge $e \in E$. Let $\delta^{-}(v)$ and $\delta^{+}(v)$ denote the set of incoming and outgoing edges for $v \in V$. Which ones of the following are necessary constraints for y_{e} ?
- $\mathrm{A}: \sum_{e \in \delta^{+}(s)} y_{e}=K$
- B: $\sum_{e \in \delta^{-}(d)} y_{e}=K$
, $\mathrm{C}: \sum_{e \in \delta^{+}(v)} y_{e}=K, \forall v \in V$
- $\mathrm{D}: \sum_{e \in \delta^{+}(v)} y_{e}=\sum_{e \in \delta^{-}(v)} y_{e}, \forall v \in V$
b $\mathrm{E}: \sum_{e \in \delta^{+}(v)} y_{e}=\sum_{e \in \delta^{-}(v)} y_{e}, \forall v \in V \backslash\{s, d\}$
- F:I don't know

Approach - Single Species

- Additional constraints and simplifications for $\Pi_{s p}$
- If some nodes are not admissible for pair p of species s, e.g., slope is too high for species s to move:
- Relax binary constraint on $y_{e}^{s p}$ will not change the solution according to known results in network flow (ILP=LP)

Approach - Single Species

- Additional constraints and simplifications for $\Pi_{s p}$
- If some nodes are not admissible for pair p of species s, e.g., slope is too high for species s to move:

$$
y_{e}^{s p}=0, \forall e=(u, v) \text { where } a d m_{v}^{s p}=0 \text { or } a d m_{u}^{s p}=0
$$

- Relax binary constraint on $y_{e}^{s p}$ will not change the solution according to known results in network flow (ILP=LP)

$$
y_{e}^{s p} \in[0,1]
$$

Approach - Single Species

- R_{p}^{S} represents the cumulative resistance of best path linking core area pair p for species s

Recall:
$y_{e}^{s p} \in\{0,1\}$ represents whether edge e is on the best path that connects the pair p of species s $r^{S}(v)$ represents resistance value of node v for species s

QI: Is it equivalent to $R_{p}^{S}=\sum_{v \in V_{p}} r^{S}(v)$ where V_{p} is the set of nodes on the path connecting pair p ?
Q 2 : Is it equivalent to $\sum_{v \in V} r^{s}(v) x_{v}$?

Approach - Single Species

- R_{p}^{S} represents the cumulative resistance of best path linking core area pair p for species s

Recall:
$y_{e}^{s p} \in\{0,1\}$ represents whether edge e is on the best path that connects the pair p of species s $r^{S}(v)$ represents resistance value of node v for species s

$$
R_{p}^{s}=\sum_{e=(u, v) \in E} \frac{r^{s}(u)+r^{s}(v)}{2} y_{e}^{s p}
$$

Remark I:This is equivalent to $R_{p}^{S}=\sum_{v \in V_{p}} r^{s}(v)$ where V_{p} is the set of nodes on the path connecting pair p. However, V_{p} is not known ahead of time. So we cannot write it in this form Remark 2:This can be different from $\sum_{v \in V} r^{S}(v) x_{v}$. To ensure that they are equivalent, we need the assumption that a node not on the path of p will never be selected. This assumption holds if we are considering the optimization problem with single species and a single pair of core areas. When we consider more pairs or more species, they are not the same.

Approach - Single Species

- Putting everything together (MILPI)

$$
R^{s}(B) \triangleq \min _{x, y} \sum_{p \in P^{S}} \sum_{e=(u, v) \in E} \frac{r^{s}(u)+r^{s}(v)}{2} y_{e}^{s p}
$$

s.t.

$$
\left.\begin{array}{c}
x_{v} \in\{0,1\}, \forall v \in V \\
\sum_{v \in V} c(v) x_{v} \leq B \\
\sum_{e \in \delta^{-}(v)} y_{e}^{s p} \leq x_{v}, \forall v \in V \backslash\{a, b\} \\
\sum_{e \in \delta^{+}(a)} y_{e}^{s p}=\sum_{e \in \delta^{-}(b)} y_{e}^{s p}=1 \\
\sum_{e \in \delta^{+}(v)} y_{e}^{s p}=\sum_{e \in \delta^{-}(v)} y_{e}^{s p}, \forall v \in V \backslash\{a, b\} \\
y_{e}^{s p}=0, \forall e=(u, v) \text { where admerver or } a d m_{u}^{s p}=0 \\
y_{e}^{s p} \in[0,1], \forall e \in E, \forall p \in P^{s}
\end{array}\right\} \forall p=(a, b) \in P^{s}
$$

Approach - Two Species

- Optimization Problem for Two Species g and w
- Updated objective function of MILPI
- α controls the balance between the two species

Normalization used to avoid comparison in completely different scales

$$
\begin{aligned}
& (\text { Recall MILPI) } \\
& R^{s}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{S}} R_{p}^{s}
\end{aligned}
$$

$$
\text { s.t. } x_{v} \in\{0,1\}, \forall v \in V
$$

Pre-computed. Optimal value of optimization problem for

$$
\begin{aligned}
& \sum_{v \in V} c(v) x_{v} \leq B \\
& \Pi_{s p}, \forall p \in P^{s}
\end{aligned}
$$ single species w

Approach - Two Species

- Optimization Problem for Two Species g and w
- Updated objective function of MILPI
- α controls the balance between the two species

$$
\begin{array}{cc}
\min _{x, y, R^{g}, R^{w}} \alpha \frac{R^{g}}{R^{g}(B)}+\left(1-\alpha\left\{\begin{array}{l}
\text { Normalization used to avoid } \\
R^{g}=\sum_{p \in P^{g}} R_{p}^{g} \\
\text { comparison in completely } \\
\text { different scales }
\end{array}\right.\right. \\
R^{w}=\sum_{p \in P^{w}} R_{p}^{w} & \begin{array}{l}
\text { (Recall MILPI) } \\
R^{s}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{s}} \\
\text { s.t. } x_{v} \in\{0,1\}, \forall v \in V \\
\sum_{p} c(v) x_{v} \leq B
\end{array} \\
\begin{array}{l}
\text { Pre-computed. Optimal value } \\
\text { of optimization problem for } \\
\text { single species } w
\end{array} & \begin{array}{l}
\Pi_{s p}, \forall p \in P^{S}
\end{array} \\
\text { Update to } \Pi_{s p}^{\downarrow}, \forall s, \forall p \in P^{s}
\end{array}
$$

Approach - Multiple Species

- Optimization Problem for Multiple Species
- Extend the objective function for two species to multiple species
- α controls the balance between the species

Approach - Multiple Species

- Optimization Problem for Multiple Species
- Extend the objective function for two species to multiple species
${ }^{\text {p }} \alpha$ controls the balance between the species

$$
\min _{x, y, R} \sum_{i} \alpha_{i} \frac{R^{i}}{R^{i}(B)}
$$

Boundary Solutions

- Minimum budget to ensure connectivity
- Slight modifications to MILPI

$$
\begin{aligned}
& \text { (Recall MILPI) } \\
& R^{s}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{s}} R_{p}^{s} \\
& \text { s.t. } x_{v} \in\{0,1\}, \forall v \in V \\
& \sum_{v \in V} c(v) x_{v} \leq B \\
& \Pi_{s p}, \forall p \in P^{s}
\end{aligned}
$$

Boundary Solutions

- Minimum budget to ensure connectivity
- Slight modifications to MILPI

$$
\min _{x, \ldots} \sum_{v \in V} c(v) x_{v}
$$

s.t.

$$
\begin{gathered}
x_{v} \in\{0,1\}, \forall v \in V \\
\Pi_{s p}, \forall p \in P^{s}
\end{gathered}
$$

$$
\begin{gathered}
\text { (Recall MILPI) } \\
R^{s}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{S}} R_{p}^{s} \\
\text { s.t. } x_{v} \in\{0,1\}, \forall v \in V \\
\sum_{v \in V} c(v) x_{v} \leq B \\
\Pi_{s p}, \forall p \in P^{s}
\end{gathered}
$$

Boundary Solutions

- Minimum cumulative resistance if no budget constraint

Compute Minimum Cumulative Resistance

- For each s
- For each $p \in P^{s}$
- Compute R_{p}^{s} :
- Compute $\underline{R}^{S}=\sum_{p} R_{p}^{S}$

Recall: Special case: $c(a)=c(b)=0, r^{s}(a)=r^{s}(b)=0$

Boundary Solutions

- Minimum cumulative resistance if no budget constraint

Compute Minimum Cumulative Resistance

- For each s
- For each $p \in P^{s}$
- Compute R_{p}^{s} : If $p=(a, b)$, then find shortest path from a to b on constructed graph where distance is defined as $\frac{r^{s}(u)+r^{s}(v)}{2}$ for any edge $e=(u, v) . R_{p}^{s}$ is the length of the shortest path.
- Compute $\underline{R}^{S}=\sum_{p} R_{p}^{S}$

Recall: Special case: $c(a)=c(b)=0, r^{s}(a)=r^{s}(b)=0$

Boundary Solutions

- Minimum budget solution among the ones with minimum cumulative resistance
- First find minimum cumulative resistance $\underline{R^{S}}$
- Then make slight modifications to MILPI

$$
\begin{aligned}
& \text { (Recall MILPI) } \\
& R^{s}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{s}} R_{p}^{s} \\
& \text { s.t. } x_{v} \in\{0,1\}, \forall v \in V \\
& \sum_{v \in V} c(v) x_{v} \leq B \\
& \Pi_{s p}, \forall p \in P^{s}
\end{aligned}
$$

Boundary Solutions

- Minimum budget solution among the ones with minimum cumulative resistance
- First find minimum cumulative resistance $\underline{R^{S}}$
- Then make slight modifications to MILPI

$$
\min _{x, \ldots} \sum_{v \in V} c(v) x_{v}
$$

s.t.

$$
\begin{gathered}
x_{v} \in\{0,1\}, \forall v \in V \\
\Pi_{s p}, \forall p \in P^{s} \\
\sum_{p \in P^{S}} R_{p}^{S} \leq \underline{R^{s}}
\end{gathered}
$$

(Recall MILPI)

$$
R^{S}(B) \triangleq \min _{x, \ldots} \sum_{p \in P^{S}} R_{p}^{S}
$$

$$
\text { s.t. } x_{v} \in\{0,1\}, \forall v \in V
$$

$$
\begin{gathered}
\sum_{v \in V} c(v) x_{v} \leq B \\
\Pi_{s p}, \forall p \in P^{s}
\end{gathered}
$$

Outline

- Wildlife Corridor Design
- Motivation
, Problem Statement
- Model
- Approach
- Case Study
- Discussion

Case Study

- Wolverines and Grizzly Bears in Western Montana
- Low population, concentrated
- Yellowstone National Park, Bob Marshall Wilderness Complex
- 12.8 wolverines across 3 mountain ranges
- 48 grizzly bears in $9900-\mathrm{km}^{2}$ zone

https://www.pinterest.com/pin/4884295220637004I7/

https://en.wikipedia.org/wiki/Grizzly_bear\#/media/File:Grizzlybear55.jpg

Case Study

- Wolverines and Grizzly Bears in Western Montana
- Different habitat requirements
- Habitats partially overlap
- Different capability of movement

Case Study

- Lands being considered
- Public area (held by National Parks, U.S. Forest Service etc)
- Tribal lands
- Private lands (held by NGOs, timber companies, individuals etc)

Case Study

- Input for the Model / Data source
- Western Montana, I000m grid
- Acquisition cost
- Tax records
- Information on conserved lands
b Other information: water body, urban parcel, etc
- Gap between model and practice: a parcel is not a set of cells
- Estimated acquisition cost: area-weighted sum of all the parcel values in the cell (using ArcGIS)
- Resistance
* Geographical information and other landscape features
\square Grizzly bears: vegetation, human development, road density
\square Wolverines: snow cover, housing development, forest edge
- Estimate resistance: Follow established method in conservation

Case Study

- Core areas

* Grizzly bears: Northern Continental Divide Ecosystem and Greater Yellowstone Ecosystem
* Wolverines: use habitat rule to identify core areas

Case Study

- Computation
- Pruning (could be lossy), i.e., exclude cells that
- Could not be made passable
- Very far from any reasonable pathway
- If included in the path, will lead to a high cumulative resistance
p 42065 cells
- Solve MILP using CPLEX, run on cluster
- 5-40 hours of computer time

Case Study

- Results
- Provide insights, suggestions, visualizations to assist decision makers
b Boundary Solutions
\square Minimum budget to ensure connectivity: $\$ 2.9 \mathrm{M}$ (high cumulative resistance)
\square Least-resistance paths: \$3I.8M expenditure (cumulative resistance is 29% and 59% of the min-budget design for grizzly bear and wolverine separately)

Case Study

- Results
- Provide insights, suggestions, visualizations to assist decision makers
- Fix $\alpha=0.5$, examine tradeoff between budget and cumulative resistance
\square Find "Elbow" point

- Which ones of the following are true about the "elbow" point in the tradeoff plot of budget and cumulative resistance?
- A:When budget is above this point, increase in budget does not lead to a significant reduction in cumulative resistance (compared to when budget is below this point)
b: Can be found by linking the first and last point to get a line, and check which point is farthest from this line
- C : Is the ideal solution for wildlife corridor design problem

D D: Can be a suggested solution to policy makers
, E:I don't know

Case Study

- Results
- Provide insights, suggestions, visualizations to assist decision makers
- Fix budget, plot cumulative resistance of two species with varying α
\square Find "Elbow" point
\square Difference across species: societal concerns and need for connectivity

Case Study

- Evaluation
- Evaluate the advantage of optimizing jointly
- Compare against separate single-species corridor design
- Same total budget, compare cumulative resistance for both species
\$ ${ }^{\text {\$ }}$ M for single-species corridor design for each species, get 67% and 40% of relative cumulative resistance for grizzly bear and wolverine
* \$8M for two-species corridor design with $\alpha=0.5$, get 65% and 33%

〉 What's missing here?

Poll 3

- Compare the two results in the lower half. They correspond to different value of α (importance of grizzly bears). Which one corresponds to a higher value of α ?
, A: Lower Left
, B: Lower Right
- C:I don't know

Outline

- Wildlife Corridor Design
- Motivation
, Problem Statement
- Model
- Approach
- Case Study
- Discussion

Discussion

- Heterogeneity:What if different core area pairs have different importance?
- Uncertainty in input: what if estimated resistance is not accurate?
- Uncertainty in acquisition: what if the purchase of a patch may fail?
What if estimated resistance is not additive?
- How to reduce the runtime?
- Brainstorming: How can AI be used for protecting wildlife habitat?

Discussion

- What are the other potential ways to use AI for wildlife conservation?

References and Additional Resources

Reference and Related Work

- Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks
- Bistra Dilkina, Rachel Houtman, Carla P. Gomes, Claire A. Montgomery, Kevin S. McKelvey, Katherine Kendall, Tabitha A. Graves, Richard Bernstein, Michael K. Schwartz
- Solving Connected Subgraph Problems in Wildlife Conservation
, Bistra Dilkina \& Carla P. Gomes
- Robust Network Design for Multispecies Conservation
- Ronan Le Bras, Bistra Dilkina, Yexiang Xue, Carla P. Gomes, Kevin S. McKelvey, Michael K. Schwartz, Claire A. Montgomery
- Spatial conservation prioritization: quantitative methods and computational tools. Moilanen et al. 2009.

