
Reminders

 PRA2 due 2/8

 Course project progress report 1 due 2/27

 Come to OH for course project discussion!
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Artificial Intelligence Methods for Social Good

Lecture 7

Case Study: Estimate Crop Yield from Remote 

Sensing Data

2/5/20242

17-537 (9-unit) and 17-737 (12-unit)

Instructor: Fei Fang

feifang@cmu.edu
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Outline

 Gaussian Process Regression

 Estimate Crop Yield

 Discussion
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Learning Objectives

 Describe the following concepts

 K-NN Regression, Gaussian Process, GP Regression

 For the crop yield estimation problem, briefly 

describe

 Significance/Motivation

 Task being tackled, i.e., what is being predicted/estimated 

 Data usage, i.e., what data is used and how it is processed

 Domain-specific considerations

 Machine learning method used

 Evaluation process and criteria
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Recall: Regression Example

 Predict house price
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Non-parametric regression

 If we don’t want to represent the relationship 

between 𝑥 and 𝑦 using an explicit function with to-

be-learned parameters, can we still make predictions?

 Simplest approach: Nearest neighbor regression
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Nearest Neighbor Regression

 1-NN regression

 Predicted value = value of “closest” point in training data

 Distance metric: Manhattan: 

 Dist 𝑥𝑖 , 𝑥𝑞 = σ𝑘 |𝑥𝑖 𝑘 − 𝑥𝑞[𝑘]|

 (Scaled) Euclidean distance: 

Dist 𝑥𝑖 , 𝑥𝑞 = σ𝑘 𝑎𝑘 𝑥𝑖 𝑘 − 𝑥𝑞[𝑘]
2

 Limitation: poor performance in areas with little data; 

sensitive to noise
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1-NN Regression

 Input: Training data {(𝑥𝑖 , 𝑦𝑖)}, query point 𝑥𝑞

 𝑖𝑁𝑁 = argmin
𝑖

𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝑦𝑖), Output: 𝑦𝑖𝑁𝑁
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Nearest Neighbor Regression

 K-NN regression
 Predicted value = average value of k “closest” points

 Robust to noise

 Limitation: poor performance in areas with little data or 
boundary; discontinuous predictions

 Choose k: cross validation
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Poll 1

 Given the following training data, what is the price of 

Alice’s house with house size = 1300 sqft through k-

NN with 𝑘 = 3
 A: 220

 B: 235

 C: 213.3

 D: 256.7

 E: Neither of the above

 F: I don’t know
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House size (sqft) Sale price ($)

1200 220

1000 170

800 150

1500 250

1800 300



Kernel Regression

 Weighted K-NN regression
 Predicted value = weighted average value of k “closest” point in 

training data

 Smaller distance → Higher weight

 E.g., weight=
1

𝐷𝑖𝑠𝑡(𝑥𝑖,𝑥𝑞)

 Kernel regression
 Predicted value = weighted average value of all points in training 

data

 Weight is a function of distance: kernel

 Example kernel: Gaussian, Triangle, Uniform

 Gaussian: 𝑘𝑒𝑟𝑛𝑒𝑙𝜆 𝑥𝑖 − 𝑥𝑞 = 𝑒−
𝑥𝑖−𝑥𝑞

2

𝜆
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Kernel Regression

 Predict house price
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Kernel Regression
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https://www.coursera.org/learn/ml-regression

https://www.coursera.org/learn/ml-regression


Kernel Regression

 Kernel regression

 Choose bandwidth parameter 𝜆: cross validation

 Small 𝜆: Overfitting to nearest neighbors; Large 𝜆: Smooth out
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Gaussian Process

 GP is a stochastic process: a collection of random 

variables indexed by context 𝒙: 𝑓 𝒙 𝒙∈𝒳

 𝒙 often represents context in time or space

 E.g., temperature in different locations (𝒳 is the set of 

locations, 𝒙 is a location, 𝑓 𝒙 is temperature at location 𝒙)

 𝒳 can be an infinite set

 Every finite collection of those random variables has 

a multivariate normal distribution

2/5/2024Fei Fang16



Example

 (Normalized) Temperature at two locations:
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Q: If I observed temperature at 

location 1 is 0.5, can we learn 

anything about the temperature at 

location 2?



Example

 𝑓 𝒙 ~𝒢𝒫(𝑚 𝒙 , 𝑘 𝒙, 𝒙′ )
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Example

 (Normalized) Temperature at three time points:
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𝑓(1)
𝑓(2)
𝑓(3.2)

~𝒩(
0
0
0

,
1 0.7 0.2
0.7 1 0.6
0.2 0.6 1

)

𝑥

𝑓(𝑥) There are infinite time points and 

the temperature at all these time 

points are correlated, how to 

represent the correlation?



Gaussian Process

 A Gaussian process can be defined as

𝑓 𝒙 ~𝒢𝒫(𝑚 𝒙 , 𝑘 𝒙, 𝒙′ )

 𝑚(𝒙) is the expectation of random variable 𝑓(𝒙)

 Kernel function 𝑘(𝒙, 𝒙′) defines covariance cov(𝑓 𝒙 , 𝑓 𝒙′ )

 E.g., Radial basis function (RBF) kernel

 Marginal and conditional prob. distributions are also Gaussian
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𝑘𝑅𝐵𝐹 𝒙, 𝒙′ = 𝜎2exp(−
𝒙 − 𝒙′ 2

2

2𝑟2
)



Example

 (Normalized) Temperature at all time points:
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𝑚 𝒙 = 0, 𝑘𝑅𝐵𝐹 𝒙, 𝒙′ = exp(−
𝒙 − 𝒙′ 2

2

2
)

𝑥

𝑓(𝑥) GP is a distribution over functions!

Training data: 𝒙𝑖 , 𝑦𝑖 , 𝑖 = 1. . 𝑁
Can you learn anything about the 

temperature at a new time point 𝒙∗?

Yes! Conditional prob. dist. is Gaussian!

Can compute the posterior mean and 

variance of 𝑓(𝒙∗)



Gaussian Process Regression

 Given training data { 𝒙𝑖 , 𝑦𝑖~𝑓 𝒙𝒊 , 𝑖 = 1. . 𝑁}, kernel 

function 𝑘, test data 𝒙∗, predict mean and variant of 

𝑓(𝒙∗) conditioned on the value of the training data
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GPR in scikit-learn implements this algorithm (Alg. 2.1 in reference [4])



GP Regression in Practice

 Existing code packages, e.g., scikit-learn

2/5/202423 https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html

Use GaussianProcessRegressor in

sklearn.gaussian_process



GP Regression in Practice

2/5/202424 https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html



Outline

 Gaussian Process Regression

 Estimate Crop Yield

 Discussion
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Agricultural Monitoring and Forecasting

 Agricultural monitoring and forecasting:

 Forecast production and demand

 Real-time monitoring of food prices

 Climate change effects

 Increase productivity with information technologies
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Crop Yield Prediction
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State level County level Field level



Deep Gaussian Process

Input: 
Remote Sensing Data

Output: 
Crop yield

Crop Yield Prediction



Existing Approaches
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New Approach - Deep Gaussian Process
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Deep Gaussian Process for Crop Yield Prediction

 𝒙 = 𝑰 1 , … , 𝑰 𝑇 , 𝒈𝑙𝑜𝑐 , 𝑔𝑦𝑒𝑎𝑟 denote an original data 

point represented by image sequences, geographic locations 

that have crop yield data, year

 𝑦 𝒙 = 𝑓 𝒙 + ℎ 𝒙 𝑇𝜷

 𝑓 𝒙 ~𝒢𝒫 𝟎, 𝑘 𝒙, 𝒙′

 ℎ(𝒙) is a fixed set of basis functions

 𝜷~𝒩(𝒃,𝑩) is an independent random variable

 ℎ(𝒙) and 𝑏 correspond to the final layer in the deep model 

(CNN), and 𝑩 = 𝜎𝑏𝐼
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𝑘 𝒙, 𝒙′ = 𝜎2exp(−
𝒈𝑙𝑜𝑐 − 𝒈𝑙𝑜𝑐

′
2
2

2𝑟𝑙𝑜𝑐
2 −

𝑔𝑦𝑒𝑎𝑟 − 𝑔𝑦𝑒𝑎𝑟
′

2

2

2𝑟𝑦𝑒𝑎𝑟
2 ) + 𝜎𝑒

2𝛿𝒈,𝒈′

Hyperparameters to be tuned

When is it purely a prediction task?



Ground Truth Model Prediction

Result



Comparison

 The Mean Absolute Percentage Error (MAPE) of US-

level model performance, averaged from 2009 to 

2015

 MAPE: a measure of prediction accuracy of a forecasting 

method
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𝐴𝑡: Actual value

𝐹𝑡: Predicted value



Est

Estimated Soybean 

Production 



Outline

 Gaussian Process Regression

 Estimate Crop Yield

 Discussion
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Discussion

 In addition to predicting/estimating poverty level and 

crop yield, what can remote sensing data be used for?
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Ground Truth Model Prediction

Result
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Result



Possible Directions
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Field level predictionsGlobal estimates

Prices? Poverty?

Planet data



Comparison


