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Sentiment Analysis

 Analyze the sentiment of given text manually is easy:

 “Great service!”

 “The food was terrible!”

 “It is Tuesday today.”

 How to do it automatically?
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Sentiment Analysis

 A simple approach:

 Manually construct a list of “positive” and “negative” words, 

give each word a polarity score in [−1,1]

 Given the text to be analyzed, extract the words and 

average their polarity score
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“Great service!”

“The food was terrible!”

“It is Tuesday today.”



Sentiment Analysis

 A simple learning-based approach if data is available:

 Data: labeled with “positive”, “negative”

 Represent given text as a feature vector

 E.g., Use bag-of-words with tf-idf

 Train a classifier

 E.g., decision tree
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TF-IDF (term frequency–inverse document frequency)

 Importance of a word 𝑡 in document D within corpus 𝐷

 tfidf 𝑡, 𝑑, 𝐷 = tf 𝑡, 𝑑 ⋅ idf 𝑡, 𝐷

 tf 𝑡, 𝑑 =
#word 𝑡 in document 𝑑

#words in document 𝑑

 𝑖𝑑𝑓 𝑡, 𝐷 = log
#documents in 𝐷

#documents in 𝐷 that contains word 𝑡

2/7/2024https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Sentiment Analysis: Example Code

2/7/2024https://github.com/sloria/TextBlob/blob/dev/textblob/en/sentiments.py8
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Topic Modeling

 An unsupervised learning task: Given a collection of 

documents, discover “topics” among them

 A document can be part of multiple topics
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Topic Modeling

 Intuition: If a document is under topic “Wildlife”, 

which one of the two words will be in the document 

with a higher probability, “Tiger” or “Christmas”?
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Wildlife Football Cyber Security

Tiger 0.3 0.01 0.01

Christmas 0.01 0.1 0.07

Movie 0.1 0.17 0.2

Loss 0.05 0.2 0.3

Win 0.02 0.3 0.08



Latent Dirichlet Allocation (LDA)

 Main idea:

 Build a parametric model of how the words in the 

documents are generated, with “topics” represented in the 

model

 Find the parameter values that best fit the data
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Latent Dirichlet Allocation (LDA)

 The model (with parameters 𝛼 and 𝛽):

 Sample a distribution over topics (𝜃)

 Sample a topic (𝑧)

 Generate a word (𝑤) based on 𝑧 according to 𝛽

2/7/2024Blei, D.M., Ng, A.Y. and Jordan, M.I., 2003. Latent dirichlet 

allocation. Journal of machine Learning research, 3(Jan), pp.993-1022.

13



Topic Modeling: Example Code
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Sequence to Sequence (Seq2seq) Model

 Transform an input sequence (source) to a new one 

(target) and both sequences can be of arbitrary 

lengths

 Usually use encoder-decoder architecture

 Incapable of remembering long sentences

2/7/2024Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning 

with neural networks." NeurIPS 2014.
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Attention

2/7/2024Vaswani et al. Attention is All You Need. 2017

https://lilianweng.github.io/posts/2018-06-24-attention/
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@mensweardog

Look at this picture for 10s. 

Tell your neighbor which part of 

the picture your eyes stayed on for 

more than 1s



Attention

2/7/2024Vaswani et al. Attention is All You Need. 2017

https://lilianweng.github.io/posts/2018-06-24-attention/
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Attention

2/7/2024Fei Fang19

Attention can be broadly interpreted as 

a vector of importance weights



How can Attention Improve over Seq2seq Model?

 Each output token depends on input tokens 

differently

 Intuitively, calculate the importance weight for each of 

the source token for current predicting token

2/7/2024https://lilianweng.github.io/posts/2018-06-24-attention/20



How can Attention Improve over Seq2seq Model?

 Say we have a source sequence of length 𝑛 and try to 

output a target sequence of length 𝑚
 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑚
 Let ℎ𝑖 be the encoder state at the 𝑖th position in the source 

sequence

 Let 𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡) be the decoder hidden state for 

the output word at position 𝑡

 Context vector 𝑐𝑡 is a weighted sum of ℎ𝑖

2/7/2024https://lilianweng.github.io/posts/2018-06-24-attention/21

𝑐𝑡 =

𝑖

𝛼𝑡,𝑖ℎ𝑖

where the importance weight 𝛼𝑡,𝑖 =
exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1,ℎ𝑖

σ𝑖′ exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1,ℎ𝑖′



Scaled Dot-Product Attention

 There are many choices of the score function

 Scaled Dot-Product Attention: 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡, ℎ𝑖 =
𝑠𝑡
𝑇ℎ𝑖

𝑛

2/7/2024Vaswani et al. Attention is All You Need. 201722

𝑐𝑡 = σ𝑖 𝛼𝑡,𝑖ℎ𝑖 , where 𝛼𝑡,𝑖 =
exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1,ℎ𝑖

σ𝑖′ exp 𝑠𝑐𝑜𝑟𝑒 𝑠𝑡−1,ℎ𝑖′



Transformer Architecture Overview

2/7/2024Vaswani et al. Attention is All You Need. 201723

Key: Use Multi-head self-attention



Transformer Architecture Overview

2/7/2024Fei Fang24

Token embedding

Position embedding



Token Embedding

 A pre-defined fixed set of tokens (vocabulary)

 Each token is represented by a fixed length vector, i.e., 

token embedding

 Typically use 𝑑 = 512(base) or 𝑑 = 1024 (large)

 Such embedding (vectors for tokens) is to be learned

2/7/2024Fei Fang25

abandon [0.2, 0.3, 0.5, 0.1]

abash [0.1, 0.4, 0.7, 0.9]

abate [0.3, 0.6, 0.5, 0.3]

abbreviate [0.8, 0.3, 0.9, 0.6]



Position embedding

 To distinguish words in different position, map 

position labels to a vector whose dimension is the 

same as token embedding (so that they can add up)

 A simple position embedding

 Given token position 𝑖 = 1,… , 𝐿 and the dimension 𝛿 =
1,… , 𝑑

2/7/2024https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/26



Position Embedding

2/7/2024https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/27

𝐿 = 32, 𝑑 = 128

𝑖

𝛿



Transformer Architecture Overview

2/7/2024Fei Fang28

Token embedding

Position embedding



Transformer Encoder

2/7/2024Vaswani et al. Attention is All You Need. 201729



Transformer Encoder

2/7/2024Fei Fang30



Transformer

 Multi-head self-attention

2/7/2024Vaswani et al. Attention is All You Need. 201731



Scaled Dot-Product Attention in Transformer

2/7/2024Vaswani et al. Attention is All You Need. 201732



Transformer Decoder

2/7/2024Vaswani et al. Attention is All You Need. 201733



Transformer Architecture Full

2/7/2024Vaswani et al. Attention is All You Need. 201734



Transformer excels in translation

2/7/2024Fei Fang35
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Bidirectional Encoder Representations from Transformers 

(BERT)

 BERT Architecture: Just use multi-layer 

bidirectional Transformer encoder

2/7/2024https://arxiv.org/abs/1810.0480537



BERT Training

 Trained with two tasks

 Task 1: Mask language model (MLM)

 Randomly mask 15% of tokens in each sequence

 Train the model to predict the missing words

 Task 2: Next sentence prediction

 Sample sentence pairs (A, B) so that: (a) 50% of the time, B 

follows A; (b) 50% of the time, B does not follow A

 Train the model to process both sentences and output a 

binary label indicating whether B is the next sentence of A.

2/7/2024Fei Fang38



Use BERT in Downstream Tasks

 For classification tasks, we get the prediction by 

taking the final hidden state of the special first token 

[CLS], ℎ𝐿
[CLS]

and multiplying it with a small weight 

matrix, i.e., 

2/7/2024Fei Fang39

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝐿
CLS

𝑊𝐶𝐿𝑆)



Get BERT Embeddings

2/7/2024Fei Fang40



Pre-Training in Natural Language Processing

 Training on a large-scale general domain data before 

training on a particular task

 usually raw (unlabelled) and easily available corpus

 self-supervised: using self-contracted signals

 there are also cases with supervised pre-training

 Two stages: 

 Pre-train

 Fine-tune

2/7/2024Fei Fang41
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Generative Pre-training Transformer (GPT)

2/7/2024https://lilianweng.github.io/posts/2019-01-31-lm/43

Key idea: Only use Decoder in Transformer



Larger model + More data = Miracle!

2/7/2024https://huggingface.co/blog/large-language-models44

2023



ChatGPT

 GPT-3.5 + Reinforcement Learning from Human 

Feedback (RLHF)

 Step 1: Pretrain language model with human-provided 

answers to prompts

2/7/2024https://huggingface.co/blog/rlhf45



ChatGPT

 GPT-3.5 + Reinforcement Learning from Human 

Feedback (RLHF)

 Step 2: Train a reward model based on human ranking

2/7/2024https://huggingface.co/blog/rlhf46



ChatGPT

 GPT-3.5 + Reinforcement Learning from Human 

Feedback (RLHF)

 Step 3: Fine-tune language model with RL

2/7/2024https://huggingface.co/blog/rlhf47



ChatGPT Summary

2/7/2024Fei Fang48



Use ChatGPT through API

 max_tokens (int): max #tokens to generate (1 to 4096)

 temperature (float): Controls randomness (0.0 to 2.0). Higher values → more randomness

 top_p (float): Alternative to sampling with temperature, called nucleus sampling. Values range from 0.0 to 
1.0. Higher values means the model will take more risks.
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Exercise revisited: Social Bot Detection

 How to use NLP techniques?

2/7/202451
https://www.adweek.com/digital/social-bots-twitter-minor-nuisance/

https://www.adweek.com/digital/social-bots-twitter-minor-nuisance/


Case Study Revisited: Food Rescue Difficulty Prediction

 How to complete step 1&2?

2/7/2024Fei Fang52
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Discussion

 Pick a UN sustainable development goal, and discuss 

how NLP techniques can help achieve the goal
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Backup Slides
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Latent Dirichlet Allocation (LDA)

2/7/2024https://miro.medium.com/v2/resize:fit:1400/1*2g0ARjCpTodoOwSso9XbLg.png56



Transformer

 Multi-head self-attention
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Scaled Dot-Product Attention in Transformer

2/7/2024Fei Fang58



Transformer Encoder

2/7/2024Fei Fang59



Transformer Decoder

2/7/2024Fei Fang60
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