

- PRA2 due 2/8
- Course project progress report I due 2/27
- Come to OH for course project discussion!

Artificial Intelligence Methods for Social Good Lecture 8 Basics of Natural Language Processing

17-537 (9-unit) and 17-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u>

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

Discussion

Sentiment Analysis

- Analyze the sentiment of given text manually is easy:
 - "Great service!"
 - "The food was terrible!"
 - "It is Tuesday today."
- How to do it automatically?

Sentiment Analysis

- A simple approach:
 - Manually construct a list of "positive" and "negative" words, give each word a polarity score in [-1,1]
 - Given the text to be analyzed, extract the words and average their polarity score

"Great service!" "The food was terrible!" "It is Tuesday today."

Sentiment Analysis

- A simple learning-based approach if data is available:
 - Data: labeled with "positive", "negative"
 - Represent given text as a feature vector
 E.g., Use bag-of-words with tf-idf
 - Train a classifier
 - E.g., decision tree

TF-IDF (term frequency-inverse document frequency)

- Importance of a word t in document D within corpus D
 - $\operatorname{tfidf}(t, d, D) = \operatorname{tf}(t, d) \cdot \operatorname{idf}(t, D)$
 - $tf(t, d) = \frac{\# word \ t \ in \ document \ d}{\# words \ in \ document \ d}$

• $idf(t,D) = \log \frac{\#\text{documents in } D}{\#\text{documents in } D \text{ that contains word } t}$

```
>>> from sklearn.feature extraction.text import TfidfVectorizer
>>> corpus = [
      'This is the first document.',
. . .
      'This document is the second document.',
     'And this is the third one.',
. . .
     'Is this the first document?',
. . .
....
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit transform(corpus)
>>> vectorizer.get_feature_names_out()
array(['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third',
       'this'], ...)
>>> print(X.shape)
(4, 9)
```

https://scikitlearn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html

```
from textblob import TextBlob
```

```
# Components of an article on AI for social good
article_title = "Leveraging AI for Social Good: A New Frontier"
```

```
# Function to analyze sentiment
def analyze_sentiment(text):
    blob = TextBlob(text)
    # sentiment polarity ranges from -1 (very negative) to 1 (very positive)
    return blob.sentiment.polarity
```

```
# Analyzing sentiment of each component
title_sentiment = analyze_sentiment(article_title)
```

```
# Printing the sentiment scores
print(f"Sentiment Polarity of Article Title: {title_sentiment}")
```

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

Discussion

Topic Modeling

- An unsupervised learning task: Given a collection of documents, discover "topics" among them
 - A document can be part of multiple topics

LOCAL NEWS >

Carnegie Mellon University hit by cyberattack possibly impacting more than 7,000 people

By **Michael Guise** January 19, 2024 / 6:25 PM EST / CBS Pittsburgh January 11, 2024

All Seven CMU Colleges Send Iris to Space

Interdisciplinary effort across Carnegie Mellon University crucial to student-led space project

Millions of hacked toothbrushes used in Swiss cyber attack, report says

Army of infected devices reportedly caused millions of euros of damage

Anthony Cuthbertson • 14 hours ago •

Comments

Tech

Topic Modeling

Intuition: If a document is under topic "Wildlife", which one of the two words will be in the document with a higher probability, "Tiger" or "Christmas"?

	Wildlife	Football	Cyber Security
Tiger	0.3	0.01	0.01
Christmas	0.01	0.1	0.07
Movie	0.1	0.17	0.2
Loss	0.05	0.2	0.3
Win	0.02	0.3	0.08

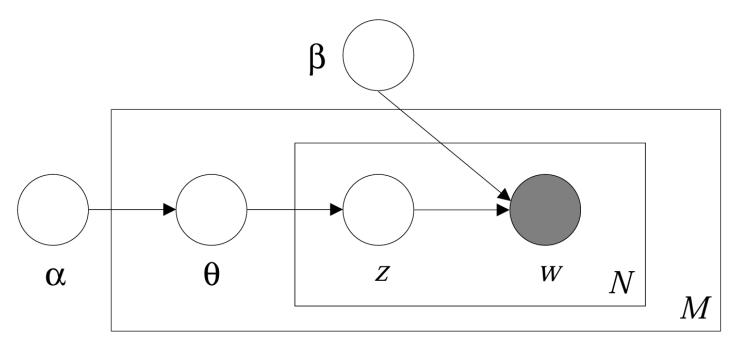
Latent Dirichlet Allocation (LDA)

Main idea:

- Build a parametric model of how the words in the documents are generated, with "topics" represented in the model
- Find the parameter values that best fit the data

Latent Dirichlet Allocation (LDA)

- The model (with parameters α and β):
 - Sample a distribution over topics (θ)
 - Sample a topic (z)
 - Generate a word (w) based on z according to β



Blei, D.M., Ng, A.Y. and Jordan, M.I., 2003. Latent dirichlet allocation. *Journal of machine Learning research*, *3*(Jan), pp.993-1022.

Topic Modeling: Example Code

```
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature extraction.text import TfidfVectorizer
import numpy as np
# Placeholder corpus: list of documents
corpus = [
    "Document 1 text ....",
    "Document 2 text ....",
    # Add more documents as needed, e.g., WHS-CORP and INFRACORP dataset
1
# Preprocess & vectorize the text data
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(corpus)
# Train the LDA model
lda = LatentDirichletAllocation(n components=50, random state=0)
lda.fit(X)
# Extracting the topic distribution for each document
doc_topic_distributions = lda.transform(X)
# Displaying the topic distribution vector for each document
for doc_idx, topic_distribution in enumerate(doc_topic_distributions):
    print(f"Document #{doc_idx} Topic Distribution:")
    print(topic distribution)
```

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

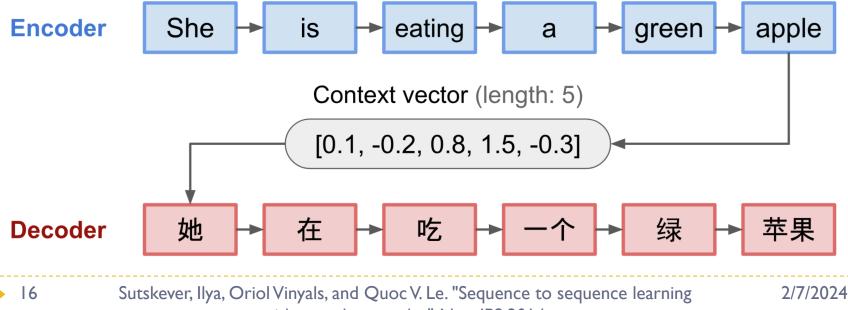
Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

Discussion

Sequence to Sequence (Seq2seq) Model

- Transform an input sequence (source) to a new one (target) and both sequences can be of arbitrary lengths
- Usually use encoder-decoder architecture
- Incapable of remembering long sentences



with neural networks." NeurIPS 2014.

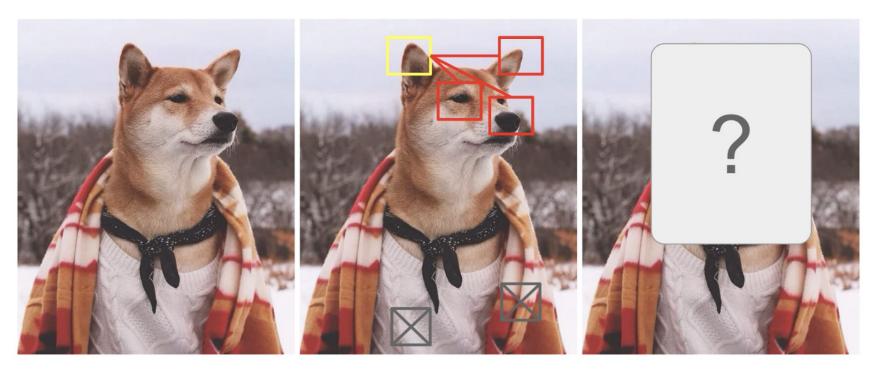
Attention

@mensweardog

Look at this picture for 10s.

Tell your neighbor which part of the picture your eyes stayed on for more than 1s

Attention



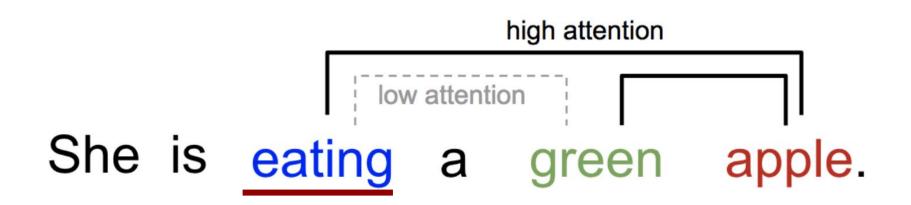
@mensweardog

Vaswani et al. Attention is All You Need. 2017 https://lilianweng.github.io/posts/2018-06-24-attention/

2/7/2024

D

Attention

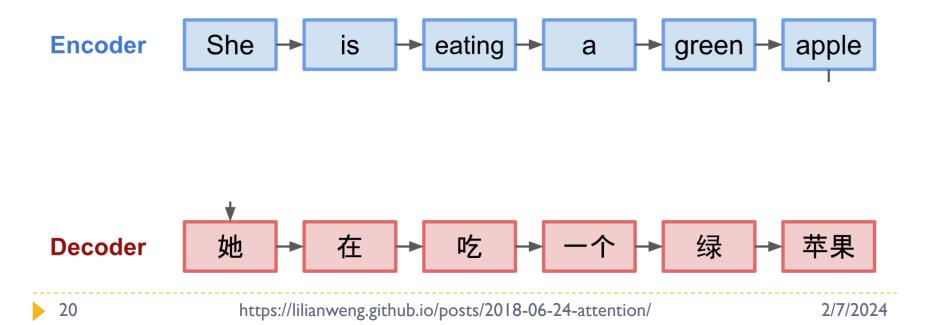


Attention can be broadly interpreted as a vector of importance weights

19

How can Attention Improve over Seq2seq Model?

- Each output token depends on input tokens differently
- Intuitively, calculate the importance weight for each of the source token for current predicting token



How can Attention Improve over Seq2seq Model?

Say we have a source sequence of length n and try to output a target sequence of length m

•
$$x = [x_1, x_2, ..., x_m], y = [y_1, y_2, ..., y_m]$$

- Let h_i be the encoder state at the *i*th position in the source sequence
- Let s_t = f(s_{t-1}, y_{t-1}, c_t) be the decoder hidden state for the output word at position t
- Context vector c_t is a weighted sum of h_i

$$c_t = \sum_i \alpha_{t,i} h_i$$

where the importance weight $\alpha_{t,i} = \frac{\exp(score(s_{t-1},h_i))}{\sum_{i'}\exp(score(s_{t-1},h_{i'}))}$

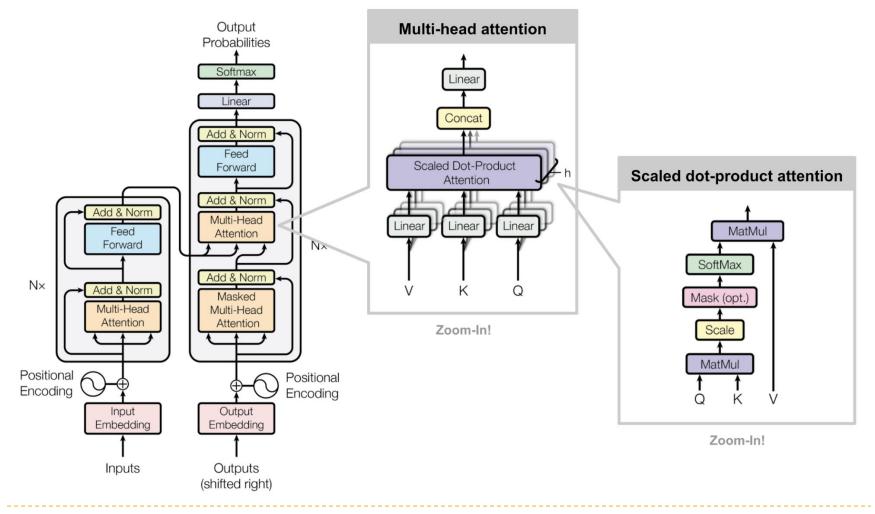
$$c_t = \sum_i \alpha_{t,i} h_i, \text{ where } \alpha_{t,i} = \frac{\exp(score(s_{t-1},h_i))}{\sum_{i'} \exp(score(s_{t-1},h_{i'}))}$$

There are many choices of the score function

Scaled Dot-Product Attention:
$$score(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{n}}$$

Transformer Architecture Overview

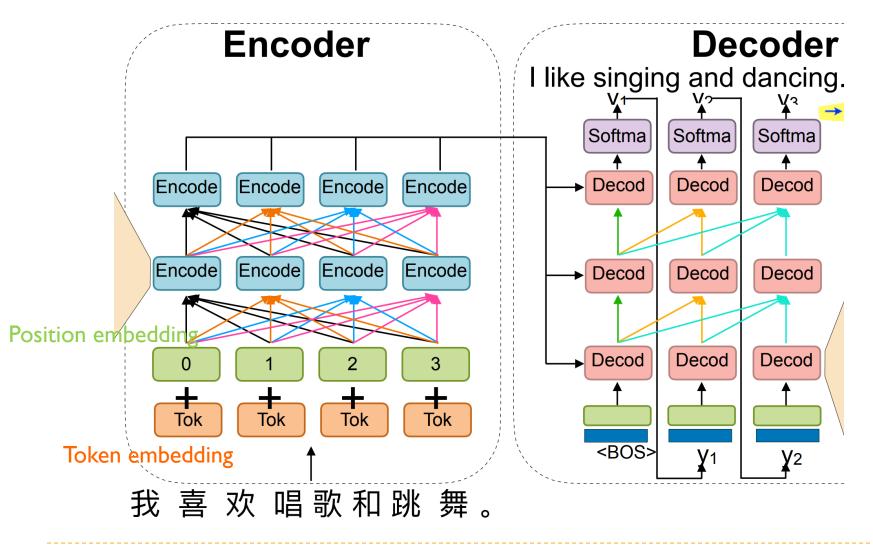
Key: Use Multi-head self-attention



Vaswani et al. Attention is All You Need. 2017

2/7/2024

Transformer Architecture Overview



- A pre-defined fixed set of tokens (vocabulary)
- Each token is represented by a fixed length vector, i.e., token embedding
 - Fypically use d = 512(base) or d = 1024 (large)
- Such embedding (vectors for tokens) is to be learned

abandon	[0.2, 0.3, 0.5, 0.1]		
abash	[0.1, 0.4, 0.7, 0.9]		
abate	[0.3, 0.6, 0.5, 0.3]		
abbreviate	[0.8, 0.3, 0.9, 0.6]		

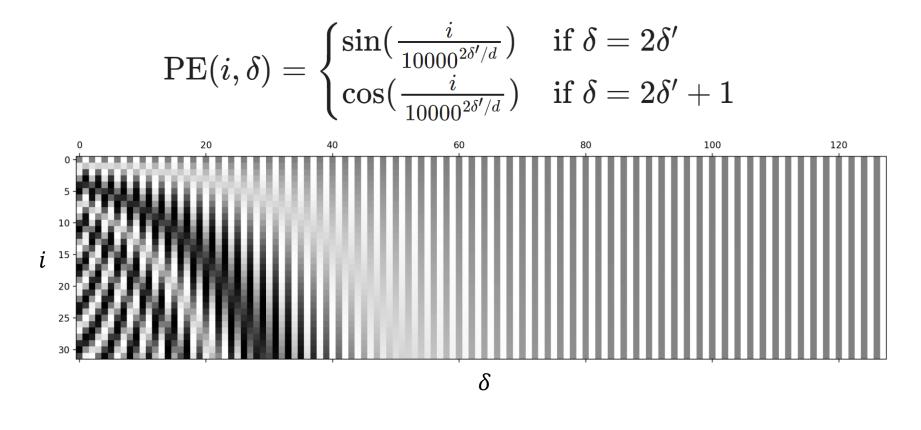
 To distinguish words in different position, map position labels to a vector whose dimension is the same as token embedding (so that they can add up)

A simple position embedding

• Given token position i = 1, ..., L and the dimension $\delta = 1, ..., d$

$$ext{PE}(i,\delta) = egin{cases} \sin(rac{i}{10000^{2\delta'/d}}) & ext{if } \delta = 2\delta' \ \cos(rac{i}{10000^{2\delta'/d}}) & ext{if } \delta = 2\delta' + 1 \end{cases}$$

Position Embedding

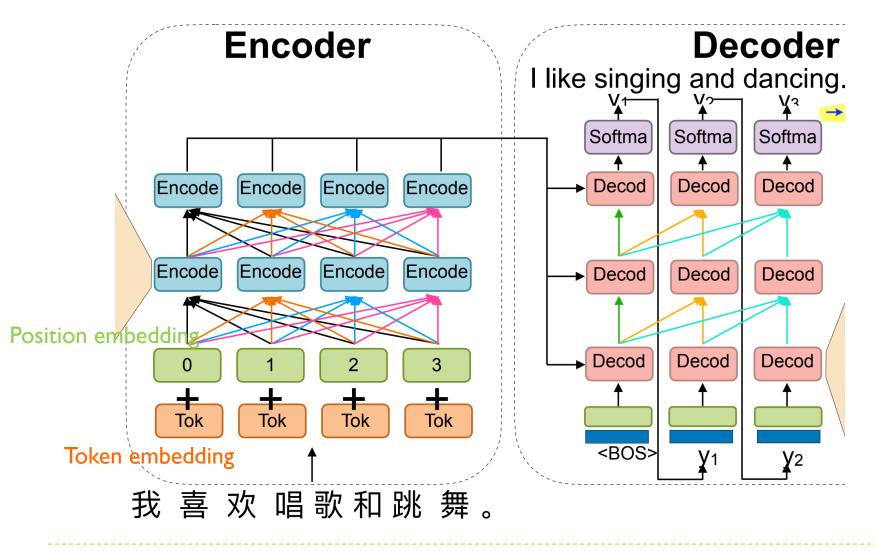


L = 32, d = 128

https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/

2/7/2024

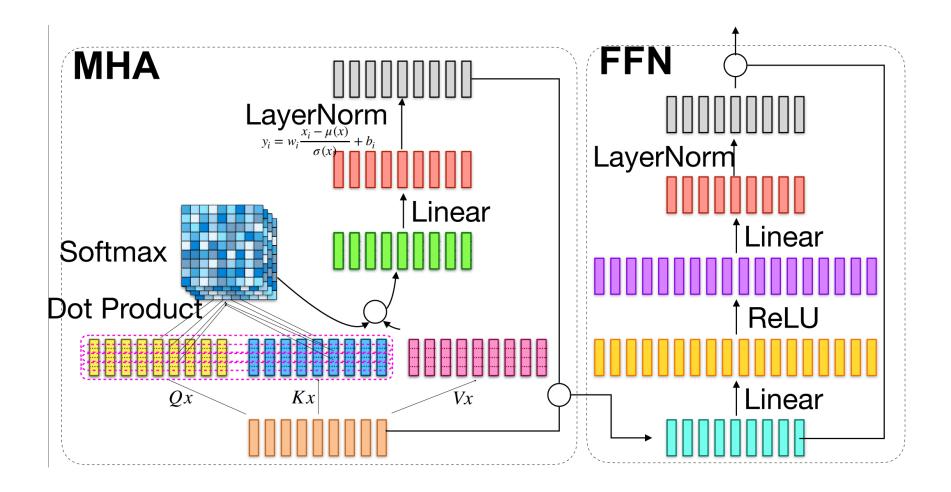
Transformer Architecture Overview



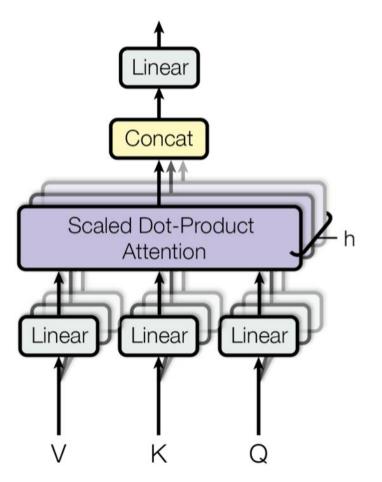
Transformer Encoder



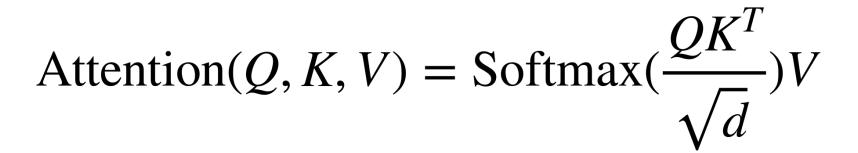
Transformer Encoder

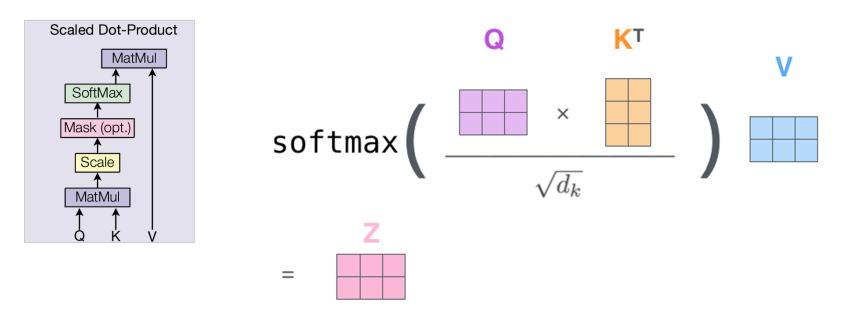


Multi-head self-attention

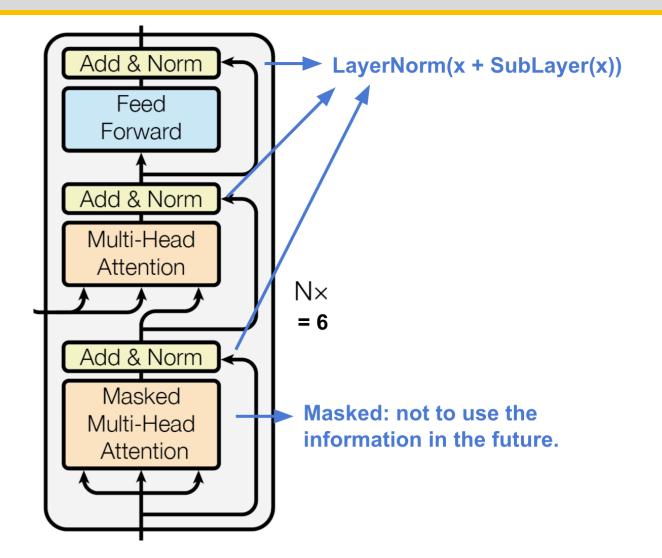


Scaled Dot-Product Attention in Transformer



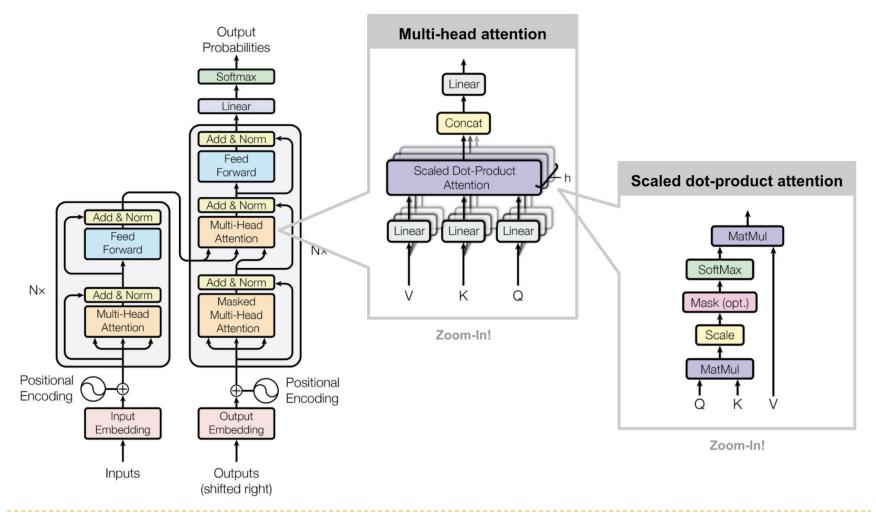


Transformer Decoder



2/7/2024

Transformer Architecture Full



Vaswani et al. Attention is All You Need. 2017

2/7/2024

Madal	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1		$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$		

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

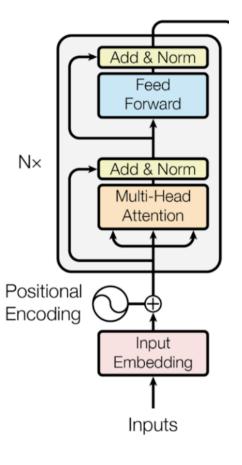
Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

Discussion

Bidirectional Encoder Representations from Transformers (BERT)

 BERT Architecture: Just use multi-layer bidirectional Transformer encoder



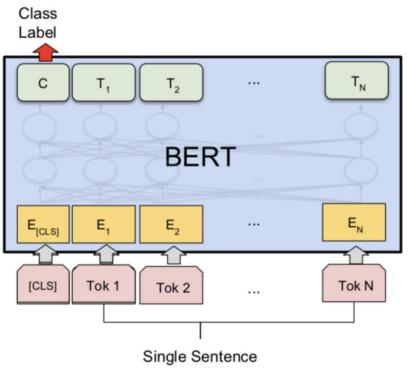
BERT Training

- Trained with two tasks
- Task I: Mask language model (MLM)
 - Randomly mask 15% of tokens in each sequence
 - Train the model to predict the missing words
- Task 2: Next sentence prediction
 - Sample sentence pairs (A, B) so that: (a) 50% of the time, B follows A; (b) 50% of the time, B does not follow A
 - Train the model to process both sentences and output a binary label indicating whether B is the next sentence of A.

Use BERT in Downstream Tasks

For classification tasks, we get the prediction by taking the final hidden state of the special first token [CLS], $h_L^{[CLS]}$ and multiplying it with a small weight matrix, i.e.,

$$output = softmax(h_L^{[CLS]}W_{CLS})$$



Get BERT Embeddings

```
from transformers import BertTokenizer, BertModel
import torch
# Initialize the tokenizer and model for BERT
tokenizer = BertTokenizer.from pretrained('bert-base-uncased')
model = BertModel.from pretrained('bert-base-uncased')
# Sample text
text = "I like AI methods for social good!"
# Encode text
input ids = tokenizer.encode(text, add special tokens=True)
# Add special tokens ([CLS] and [SEP])
input_ids = torch.tensor([input_ids]) # Convert to tensor
with torch.no_grad(): # Disable gradient calculation
    outputs = model(input ids) # Get model outputs
    hidden states = outputs.last hidden state
# The last hidden-state is the first element of the output tuple
# Get embeddings for each token
embeddings per token = hidden states.squeeze()
# Remove batch dimension, resulting in a shape of [N, 768]
embeddings per token.shape # torch.Size([10, 768])
```

Pre-Training in Natural Language Processing

- Training on a large-scale general domain data before training on a particular task
 - usually raw (unlabelled) and easily available corpus
 - self-supervised: using self-contracted signals
 - there are also cases with supervised pre-training
- Two stages:
 - Pre-train
 - Fine-tune

Outline

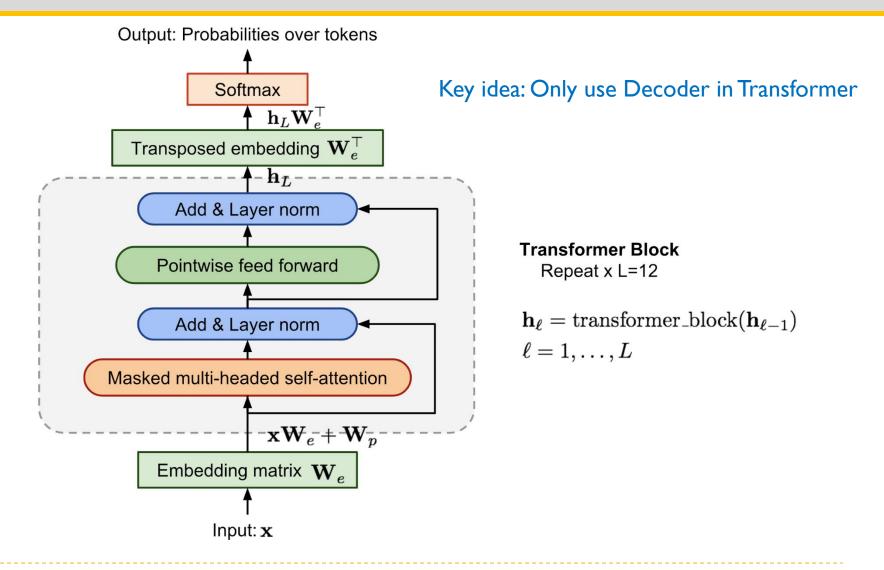
- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

Revisit

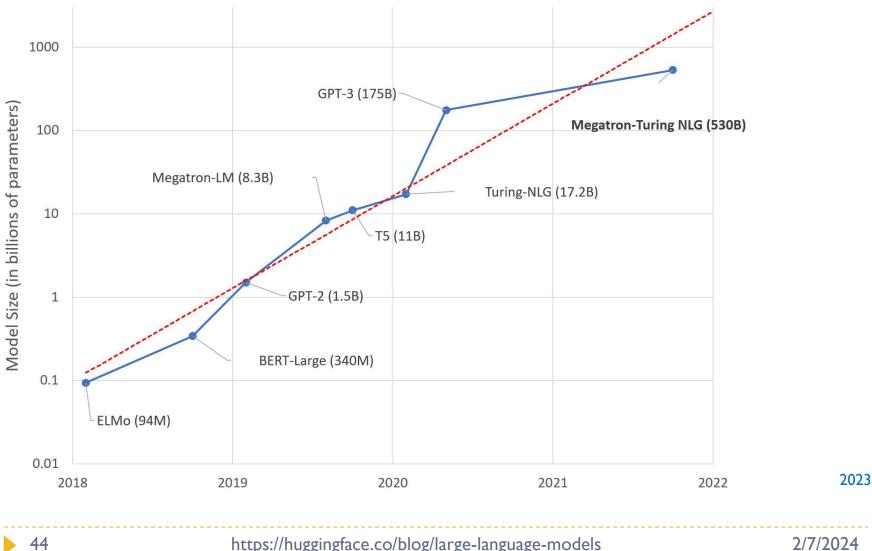
- Social Bot Detection
- Food Rescue Difficulty Prediction

Discussion

Generative Pre-training Transformer (GPT)



Larger model + More data = Miracle!



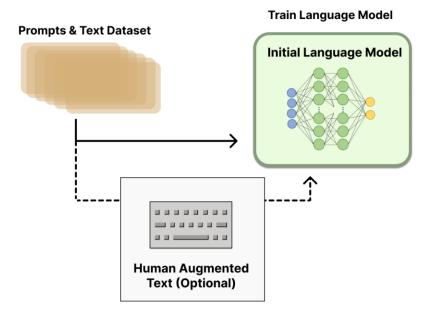
https://huggingface.co/blog/large-language-models

2/7/2024

ChatGPT

 GPT-3.5 + Reinforcement Learning from Human Feedback (RLHF)

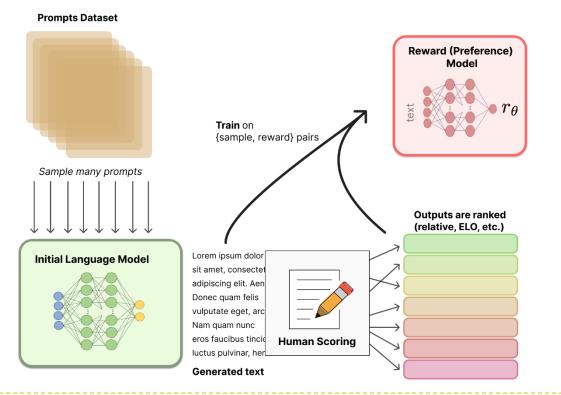
Step I: Pretrain language model with human-provided answers to prompts



ChatGPT

GPT-3.5 + Reinforcement Learning from Human Feedback (RLHF)

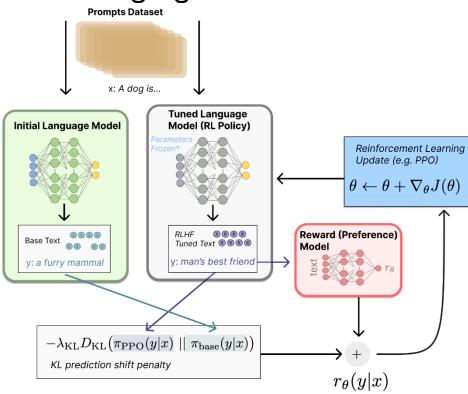
Step 2: Train a reward model based on human ranking



ChatGPT

 GPT-3.5 + Reinforcement Learning from Human Feedback (RLHF)

Step 3: Fine-tune language model with RL



ChatGPT Summary

Step 1

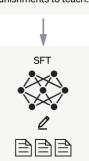
Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

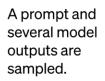
This data is used to fine-tune GPT-3.5 with supervised learning.

We give treats and punishments to teach...



Step 2

Collect comparison data and train a reward model.



A labeler ranks the

outputs from best

This data is used

reward model.

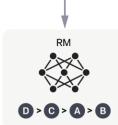
to train our

to worst.

Explain reinforcement learning to a 6 year old.

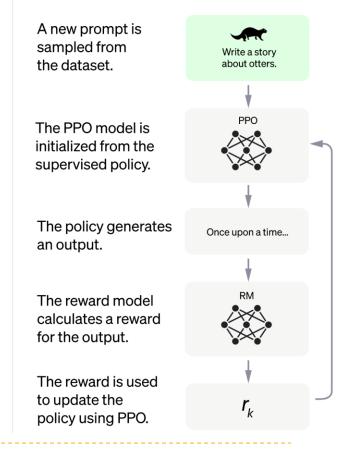
C D In machine learning...

D>C>A>B



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.



2/7/2024

Use ChatGPT through API

```
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
  model="gpt-4-turbo-preview",
 messages=[
    {
      "role": "user",
      "content":
"Hello! What do you know about AI methods for social good?"
    }
  ],
  temperature=0.7,
 max tokens=256,
  top p=1,
  frequency penalty=0,
  presence penalty=0
```

- max_tokens (int): max #tokens to generate (1 to 4096)
- temperature (float): Controls randomness (0.0 to 2.0). Higher values \rightarrow more randomness
- top_p (float): Alternative to sampling with temperature, called nucleus sampling. Values range from 0.0 to 1.0. Higher values means the model will take more risks.

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

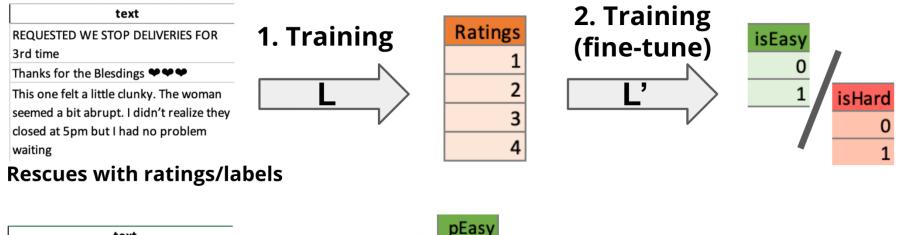
Discussion

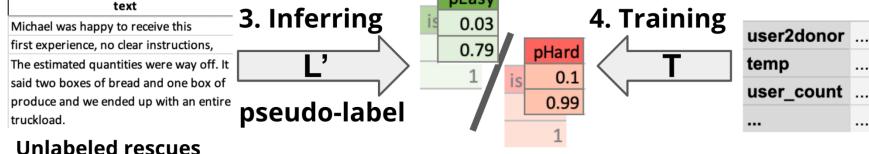
Exercise revisited: Social Bot Detection

How to use NLP techniques?

https://www.adweek.com/digital/social-bots-twitter-minor-nuisance/

Case Study Revisited: Food Rescue Difficulty Prediction





52

Fei Fang

2/7/2024

...

...

• • •

...

•••

Outline

- Sentiment Analysis
- Topic Modeling
- Transformer \rightarrow BERT \rightarrow GPT \rightarrow ChatGPT

Revisit

- Social Bot Detection
- Food Rescue Difficulty Prediction

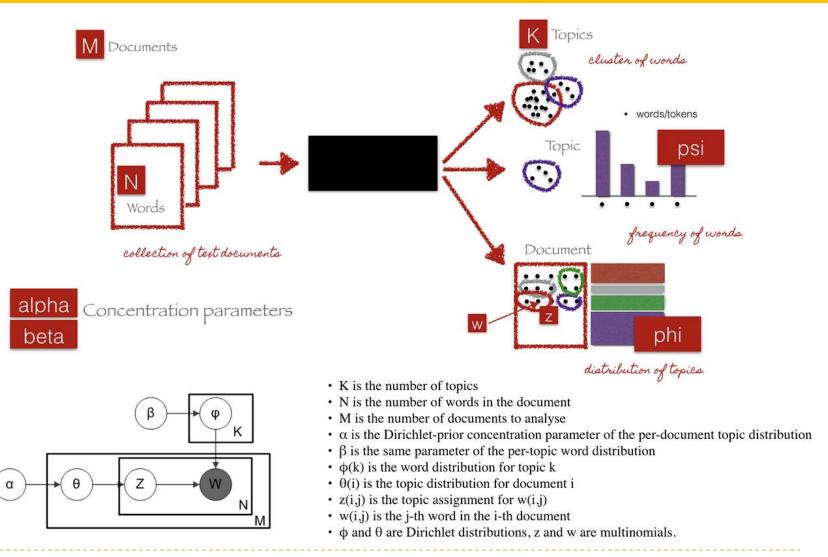
Discussion

Discussion

Pick a UN sustainable development goal, and discuss how NLP techniques can help achieve the goal

Backup Slides

Latent Dirichlet Allocation (LDA)

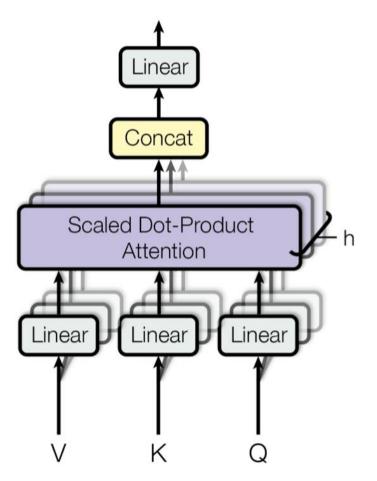


2/7/2024

56

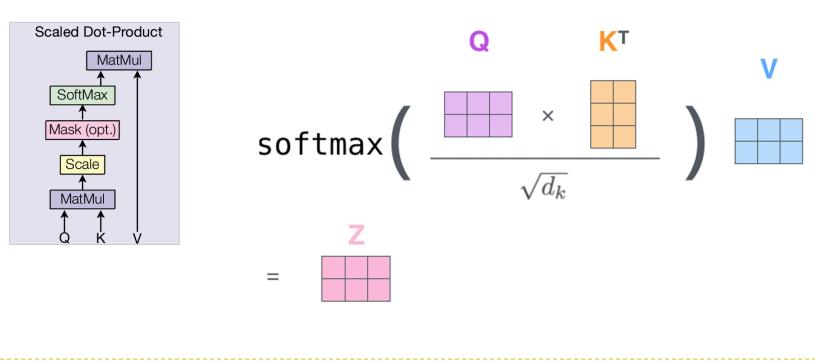
Transformer

Multi-head self-attention

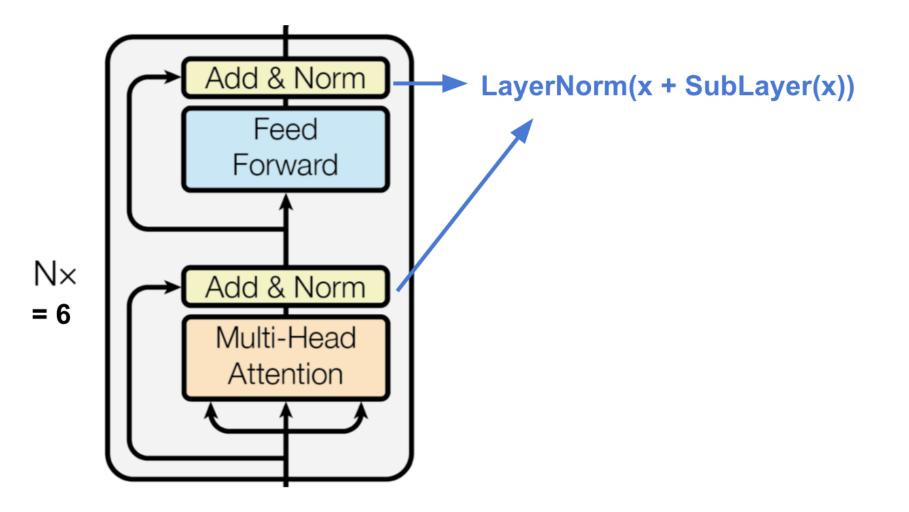


Scaled Dot-Product Attention in Transformer

Attention(Q, K, V) = Softmax($\frac{QK^T}{\sqrt{d}}$)V



Transformer Encoder



Transformer Decoder

60

