
Reminders

 HW2 due 2/18

 PRA3 due 2/22

 Course project progress report 1 due 2/27

 Come to OH for course project discussion!
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Outline

 Multi-Armed Bandit (MAB) Problems

 Bandit Data-Driven Optimization in Food Rescue

 Markov Decision Process

 Restless Multi-Armed Bandits
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Learning Objectives

 Understand the concept of

 Multi-Armed Bandit (MAB)

 Zero-regret strategy

 Upper Confidence Bound (UCB)

 Probably approximately correct (PAC)

 Markov Decision Process

 Restless Multi-Armed Bandits
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A Simple Sequential Decision Making Problem

 Multi-Armed Bandit (MAB)

 𝐾 arms (slot machines)

 Each arm 𝑘 is associated with a reward 

distribution 𝑅𝑘 (pdf 𝑝𝑘(𝑟)), with expected 

reward 𝜇𝑘

 Gambler does not know 𝑅𝑘, 𝜇𝑘
 In each round 𝑡 ∈ {1…𝑇}, gambler 

chooses one arm 𝐼𝑡, and observe a reward 

𝑟𝑡 drawn from the distribution 𝑅𝐼𝑡
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𝜇𝑘 = 𝔼𝑟~𝑅𝑘 𝑟 = න
𝑟

𝑟𝑝𝑘 𝑟 𝑑𝑟



Multi-Armed Bandit (MAB)

 A special case: Binary MAB 

 Reward is either 0 or 1

 Pr 𝑟 = 1 = 𝑝𝑘, Pr 𝑟 = 0 = 1 − 𝑝𝑘, 𝜇𝑘 = 𝑝𝑘
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Arm 1 Arm 2 Arm 3

𝜇𝑘 0.2 0.3 0.7



Multi-Armed Bandit (MAB)

 Let 𝜇∗ = max
𝑘

𝜇𝑘

 Define regret 𝜌𝑇 = 𝑇𝜇∗ − σ𝑡=1
𝑇 𝑟𝑡

 A typical task in MAB: find zero-regret strategy

 lim
𝑇→∞

𝜌𝑇

𝑇
= 0
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Arm 1 Arm 2 Arm 3

𝜇𝑘 0.2 0.3 0.7

If always choose arm 1, what is the expected regret?

𝔼 𝜌𝑇 =



Multi-Armed Bandit (MAB)

 Let 𝜇∗ = max
𝑘

𝜇𝑘

 Define regret 𝜌𝑇 = 𝑇𝜇∗ − σ𝑡=1
𝑇 𝑟𝑡

 A typical task in MAB: find zero-regret strategy

 lim
𝑇→∞

𝜌𝑇

𝑇
= 0
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Arm 1 Arm 2 Arm 3

𝜇𝑘 0.2 0.3 0.7

If always choose arm 1, what is the expected regret?

𝔼 𝜌𝑇 = 𝔼 𝑇𝜇∗ −෍

𝑡=1

𝑇

ෝ𝑟𝑡 = 𝑇𝔼 𝜇∗ − 𝔼 ෍

𝑡=1

𝑇

ෝ𝑟𝑡 = 𝑇 ∗ 0.7 − 𝑇 ∗ 0.3 = 0.4𝑇



Poll 1

 Consider a MAB with 3 arms and the expected 

reward for arm 𝑘 ∈ {1. . 3} is 𝜇𝑘 = 𝑘/3. If we 

randomly choose an arm to pull in each round for 𝑇
rounds, what would be the expected average regret 

𝔼[
𝜌𝑇

𝑇
]?

 A: 1    B: 
1

2
C:

1

3
D: 

2

3

 E: None of the above

 F: I don’t know
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𝜇∗ = max
𝑘

𝜇𝑘

𝜌𝑇 = 𝑇𝜇∗ − σ𝑡=1
𝑇 ෝ𝑟𝑡

Arm 1 Arm 2 Arm 3

𝜇𝑘 1/3 2/3 1



Poll 1

 Consider a MAB with 3 arms and the expected 

reward for arm 𝑘 ∈ {1. . 3} is 𝜇𝑘 = 𝑘/3. If we 

randomly choose an arm to pull in each round for 𝑇
rounds, what would be the expected average regret 

𝔼[
𝜌𝑇

𝑇
]?
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𝜇∗ = max
𝑘

𝜇𝑘

𝜌𝑇 = 𝑇𝜇∗ − σ𝑡=1
𝑇 ෝ𝑟𝑡

𝔼
𝜌𝑇
𝑇

= 𝔼
𝑇𝜇∗ − σ𝑡=1

𝑇 ෝ𝑟𝑡
𝑇

= 𝔼 𝜇∗ − 𝔼
σ𝑡=1
𝑇 ෝ𝑟𝑡
𝑇

= 1 −
σ𝑘 𝜇𝑘
𝑛

= 1 −
𝑛 𝑛 + 1

2𝑛2
= 1 −

𝑛 + 1

2𝑛
= 1 −

1

2
−

1

2𝑛
=
1

2
−

1

2𝑛
=
1

2
−
1

6
=
1

3



Discussion

 What problems you encounter in your daily life can 

be viewed / modeled as an MAB problem?

 In those problems, how do you choose the arm to 

pull in each time step?
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Probably approximately correct (PAC) and MAB

 Probably approximately correct (PAC): with high 

probability, it is close to being correct

Pr 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜖 ≥ 1 − 𝛿

 PAC version of zero-regret strategy

Pr( lim
𝑇→∞

𝜌

𝑇
≤ 𝜖) ≥ 1 − 𝛿
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Upper Confidence Bound in Binary MAB

 In binary MAB, reward is either 0 or 1

 Let 𝑁(𝑘) be the number of times that 𝑘 is chosen

 Let 𝐻(𝑘) be the number of times that 𝑘 is chosen 

and reward is 1

 Let ෞ𝜇𝑘 = 𝐻(𝑘)/𝑁(𝑘), average reward when 𝑘 is 

chosen

 Given 𝑁(𝑘), 𝐻(𝑘), ෞ𝜇𝑘, we can estimate the range of 

𝜇𝑘
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Upper Confidence Bound in Binary MAB

 ෞ𝜇𝑘 = 𝐻(𝑘)/𝑁 𝑘

 According to Chernoff-Hoeffding Bound

 Pr ෞ𝜇𝑘 ≥ 𝜇𝑘 + 𝑎 ≤ 𝑒−2𝑎
2𝑁(𝑘)

 Pr ෞ𝜇𝑘 ≤ 𝜇𝑘 − 𝑎 ≤ 𝑒−2𝑎
2𝑁(𝑘)

 So Pr ෞ𝜇𝑘 − 𝑎 ≤ 𝜇𝑘 ≤ ෞ𝜇𝑘 + 𝑎 ≥ 1 − 2𝑒−2𝑎
2𝑁(𝑘)

 What do we know from this?

 If we set 𝑎 =
2 ln 𝑡

𝑁(𝑘)
and 𝜇𝐿𝐵

𝑘 = ෞ𝜇𝑘 − 𝑎, 𝜇𝑈𝐵
𝑘 = ෞ𝜇𝑘 + 𝑎

 Then Pr 𝜇𝐿𝐵
𝑘 ≤ 𝜇𝑘 ≤ 𝜇𝑈𝐵

𝑘 ≥ 1 − 2𝑡−4
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Upper Confidence Bound in Binary MAB

 Chernoff-Hoeffding Bound: Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be 

independent random variables in the range 0, 1 with 

𝔼 𝑋𝑖 = 𝜇. Then for 𝑎 > 0

Pr(
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖 ≥ 𝜇 + 𝑎) ≤ 𝑒−2𝑎
2𝑛

Pr(
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖 ≤ 𝜇 − 𝑎) ≤ 𝑒−2𝑎
2𝑛

 That is, with high probability, the observed average 

value of 𝑋𝑖 is very close to the expected value of 𝑋𝑖
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Upper Confidence Bound in Binary MAB

 UCB1 Algorithm:

 Always choose the arm with the highest upper confidence 

bound defined as 𝜇𝑈𝐵
𝑘 = ෞ𝜇𝑘 +

2 ln 𝑡

𝑁(𝑘)

 Intuition: If 𝜇𝑈𝐵
𝑘 is large, either arm 𝑘 is a good arm or 𝑁(𝑘)

is small (not enough data is gathered)

 General principle: optimism in the face of uncertainty
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Upper Confidence Bound in Binary MAB
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UCB1 Algorithm

Initialize 𝐻 ⋅ = 0,𝑁 ⋅ = 0, 𝜇𝑈𝐵
⋅ = 0, ෝ𝜇⋅ = 0

For 𝑡 = 1. . 𝑇

Choose arm 𝑘𝑡 = argmax𝑘 𝜇𝑈𝐵
𝑘

Get reward 𝑟𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑘
Update 𝐻 𝑘𝑡 ← 𝐻 𝑘𝑡 + 𝑟𝑡
Update 𝑁 𝑘𝑡 ← 𝑁 𝑘𝑡 + 1

Update ෞ𝜇𝑘𝑡 =
𝐻 𝑘𝑡

𝑁 𝑘𝑡

For 𝑘 = 1. . 𝑁

Update 𝜇𝑈𝐵
𝑘 ← ෞ𝜇𝑘 +

2 ln 𝑡

𝑁(𝑘)



Upper Confidence Bound in Binary MAB
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UCB1 Algorithm

Initialize 𝐻 ⋅ = 0,𝑁 ⋅ = 0, 𝜇𝑈𝐵
⋅ = 0, ෝ𝜇⋅ = 0

For 𝑡 = 1. . 𝑇
Choose arm 𝑘𝑡 =
Get reward 𝑟𝑡~

Update 𝐻 𝑘𝑡 ← 𝐻 𝑘𝑡 + 𝑟𝑡
Update 𝑁 𝑘𝑡 ← 𝑁 𝑘𝑡 + 1

Update ෞ𝜇𝑘𝑡 =
𝐻 𝑘𝑡

𝑁 𝑘𝑡

For 𝑘 = 1. . 𝑁

Update 𝜇𝑈𝐵
𝑘 ←



Poll 2
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 (T/F) Follow UCB1 algorithm. Assume that in round 𝑡, 

arm 1 has the highest upper confidence bound 𝜇𝑈𝐵
𝑘

among all arms

 If 𝜇𝑈𝐵
1 − 𝜇𝐿𝐵

1 ≤ 𝜖, then the difference between the 

optimal expected reward among all arms and the 

average value of arm 1 is guaranteed to be no larger 

than 𝜖 with high probability, i.e.,

Pr max
𝑘

𝜇𝑘 − 𝜇1 ≤ 𝜖 ≥ 1 − 2𝑡−4?

Pr 𝜇𝐿𝐵
𝑘 ≤ 𝜇𝑘 ≤ 𝜇𝑈𝐵

𝑘 ≥ 1 − 2𝑡−4



Poll 2
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 (T/F) If 𝜇𝑈𝐵
1 − 𝜇𝐿𝐵

1 ≤ 𝜖, then the difference between 

the optimal expected reward among all arms and the 

average value of arm 1 is guaranteed to be no larger 

than 𝜖 with high probability, i.e.,

Pr max
𝑘

𝜇𝑘 − 𝜇1 ≤ 𝜖 ≥ 1 − 2𝑡−4?



A Practical Problem: Video Recommendation

 You need to recommend videos to a user

 Each arm corresponds to a video

 Pull an arm: recommend the video to the user

 Reward: whether user clicks/likes the video

 Q: Can we use UCB1 to decide which video to 

recommend? What are the issues with this approach 

if we want to deploy it on Youtube?
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Discussion

 In food rescue domain that we have discussed, is 

there any problem that can be formulated as a MAB 

problem?
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Contextual Bandits

 𝐾 arms

 In round 𝑡 ∈ {1…𝑇}, we observe context 𝐱𝑘,𝑡 for all 

arms 𝑘 ∈ {1…𝐾}, then choose an arm 𝐼𝑡, and receive 

reward 𝑟𝑡 which depends on 𝐼𝑡 and 𝐱𝐼𝑡,𝑡

 In video recommendation, 𝐱𝑘,𝑡 can be features of the 

user-video pair

 In food rescue, 𝐱𝑘,𝑡 can be features of the rescue-

volunteer pair
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LinUCB Overview (Disjoint linear models)

 Assume reward is a arm-dependent linear function of 
context vector + noise

 𝑟𝑡 = 𝐱𝐼𝑡,𝑡
𝑇 𝜽𝐼𝑡

∗ + 𝜖𝑡

 𝔼[𝑟𝑡] = 𝐱𝐼𝑡,𝑡
𝑇 𝜽𝐼𝑡

∗

 𝜃𝑘
∗ are unknown coefficient vector associated with each arm

 After a number of rounds, for each arm 𝑘, apply linear 
regression on existing data (𝐱𝐼𝑡,𝑡 , 𝑟𝑡) where 𝐼𝑡 = 𝑘 to 

get estimated ෡𝜽𝑘
∗

 For a new round 𝑡, calculate the UCB for each arm 𝑘
based on 𝐱𝑘,𝑡

𝑇 ෡𝜽𝑘
∗

 Choose the arm with the highest UCB

2/14/2024https://arxiv.org/pdf/1003.0146.pdf24



LinUCB Overview (Hybrid linear models)

 𝔼 𝑟𝑡 = 𝐳𝐼𝑡,𝑡
𝑇 𝜷∗ + 𝐱𝐼𝑡,𝑡

𝑇 𝜽𝐼𝑡
∗

 𝜷∗ is a shared coefficient vector across all arms

 Can still apply linear regression to get estimated ෡𝜷∗

and ෡𝜽𝑘
∗

 For a new round 𝑡, calculate the UCB for each arm 𝑘
based on 𝐳𝑘,𝑡

𝑇 ෡𝜷∗ + 𝐱𝑘,𝑡
𝑇 ෡𝜽𝑘

∗

 Choose the arm with the highest UCB

 Q: What if we already have some data, but we don’t 
believe the reward is a linear function of context?
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Outline

 Multi-Armed Bandit (MAB) Problems

 Bandit Data-Driven Optimization in Food Rescue

(Optional)

 Markov Decision Process

 Restless Multi-Armed Bandits
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27

Volunteer engagement as iterative prediction-prescription

ML prediction

Optimization

Implementation

ML retraining

Features

Volunteer & rescue 

attributes

Predicted labels

Claim probability of 

each volunteer

Interventions

Send notifications to 

whom

Data collection

Observe which 

volunteer claims it
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Application-independent iterative prediction-prescription

ML prediction

Optimization

Implementation

ML retraining

Features Predicted labels

InterventionsData collection

• Data-driven optimization

[Bertsimas and Kallus, 2020; 

Elmachtoub and Grigas, 2017]

• Decision-focused learning

[Donti et al., 2017]

• Contextual/linear bandit

[Dani et al., 2008; Lai and 

Robbins, 1985]
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Feature 𝑥 Action 𝑤

Label Ƹ𝑐

Offline ML

predictor
Bandit

algorithm

Cost 

(known)
Label 𝑐

Cost 

(unknown)

Optimal policy:

Regret:

𝑝 𝑐, 𝑤 = 𝑐 ⋅ 𝑤 𝑞 𝑤 = 𝜇 ⋅ 𝑤

Bandit data-driven optimization
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PROOF: PRedict-then-Optimize with Optimism in Face of 

uncertainty

Select action by integrating UCB with offline ML model

Set the confidence radius for UCB

Update the bandit cost estimate

Train the ML model & use it to make a prediction Theorem.

Assuming ordinary 

least squares 

regression, the 

PROOF algorithm has 

regret ෨𝑂 𝑛 𝑑𝑚𝑇

with probability 1 − 𝛿.
Receive the true labels and cost
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Numerical simulations

PROOF converges

• much faster, and

• with smaller 

variance

than vanilla bandit.
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Numerical simulations

PROOF outperforms vanilla bandit in both convergence speed and variance.

Small scale base case Data/step increased from 20 to 40 Linear mapping norm multiplied by 10

Large scale base case Linear mapping norm divided by 10 Data noise multiplied by 5
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PROOF for food rescue volunteer recommendation

Feature  𝑥 Volunteer-rescue pair features

Label 𝑐 ∈ 0, 1 𝑑 whether volunteer claimed the 

rescue

Action 𝑤 ∈
0, 1 𝑑

whether to send push notifications to 

each volunteer

Known cost

𝑝(𝑐, 𝑤)
whether we send push notifications 

to the “right” volunteer

Unknown cost 

𝑞(𝑤)
how volunteers might react to 

notifications

Base case

Known cost 𝑝(⋅) multiplied by 4



Outline

 Multi-Armed Bandit (MAB) Problems

 Bandit Data-Driven Optimization in Food Rescue

 Markov Decision Process

 Restless Multi-Armed Bandits
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General Sequential Decision Making Problems

 The agent move from state to state

 At each time step, the agent choose an action

 Action bring the agent to a successor state

 Actions and / or states lead to reward

 A rational agent acts so as to maximize the expected utility in 

total (which is some function of the reward)

2/14/2024Fei Fang35

Environment

Agent

Action Reward



Markov Decision Process (MDP)

 Special case of sequential decision problems

 MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾
 𝑆: set of states, 𝑠𝑡 ∈ 𝑆 (where can agent be?)

 𝐴: set of actions, 𝑎𝑡 ∈ 𝐴 (what can agent do?)

 𝑇: transition function 𝑇 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 = ℙ 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡
(what happens next?)

 𝑅: reward function 𝑟𝑡 = 𝑅 𝑠𝑡 or 𝑅(𝑠𝑡 , 𝑎𝑡) or 

𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) (what do I gain?) 

 𝛾 ∈ [0, 1] (discount factor)

2/14/2024Fei Fang36

Next state only depends on the current state, not previous states! (Markovian)



Markov Decision Process (MDP)

 Assume an agent starts at 𝑠0, takes action 𝑎0, gets 

reward 𝑟0, arrives at 𝑠1, takes action 𝑎1, …

 Agent’s utility = accumulated reward with discount =

σ𝑡 𝛾
𝑡𝑟𝑡

2/14/2024Fei Fang37



Markov Decision Process (MDP)

 MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾

 (Deterministic) Policy 𝜋: 𝑆 → 𝐴
 Maps state to action, defines a plan

 Given a policy 𝜋, we can sample history ℎ =
{𝑠0, 𝑎0, 𝑠1, 𝑎1, … }

 Goal: find 𝜋 to maximize utility
 Expected

 𝜋∗ = argmax𝜋𝔼ℎ~𝜋 σ𝑡 𝛾
𝑡𝑅 𝑠𝑡, 𝜋 𝑠𝑡

 Myopic strategy does not work: 𝑎𝑡 affects future states
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Example

2/14/2024Fei Fang39

with 𝑅(𝑠, 𝑎) = −0.04 ∀𝑠, 𝑎

Actions = {Up, Down, Left, Right}

Optimal policy

MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾

Q: Optimal policy with 𝑅 𝑠, 𝑎 = −100000?



Example

 If we want to find optimal policy through brute force search: 

Enumerate all possible policies and compare expected utility

 How to compute/estimate the expected utility?

2/14/2024Fei Fang40



Value Function

 The value function of a given policy 𝜋 describes the 

expected accumulated reward with discount starting 

from a state

𝑉𝜋 𝑠 = 𝔼[෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡 , 𝜋 𝑠𝑡 ]

Where 𝑠0 = 𝑠

Sometimes called state value function or 𝑉-value 

function

2/14/2024Fei Fang41



Value Function

 The goal can be restated as finding the policy 𝜋 that 

lead to the optimal 𝑉𝜋 𝑠 , i.e., argmax
𝜋

𝑉𝜋(𝑠)

2/14/2024Fei Fang42

𝑉 𝑠 = 𝑉∗ 𝑠 = max
𝜋

𝑉𝜋(𝑠) = 𝑉𝜋∗(𝑠)



Value Function
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Q: Given 𝑉∗(𝑠), how to find the optimal policy?

𝜋∗ 𝑠 = argmax
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ] , ∀𝑠

Pick the action which maximizes current + future reward

(assuming continued optimal behavior)



Bellman Equation

 𝑉∗(𝑠) satisfy the following Bellman Equation
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𝑉∗ 𝑠 = max
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ]

Necessary and sufficient condition for optimality!



Q-Value Function

 Similar to state value function 𝑉𝜋(𝑠), but defined on 

state-action pair

 𝑄𝜋(𝑠, 𝑎): expected total reward from state 𝑠 onward 

if taking action 𝑎 in state 𝑠, and follow policy 𝜋
afterward
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That is 𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋(𝑠′)

Obviously 𝑉𝜋 𝑠 = 𝑄𝜋(𝑠, 𝜋 𝑠 )

So 𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑄𝜋(𝑠′, 𝜋 𝑠′ )



Optimal Q-Value

 When using optimal policy 𝜋∗, we will take the action 

that leads to maximum total utility at each state

 Therefore
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Recall 𝑉𝜋 𝑠 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋(𝑠) 𝑉𝜋(𝑠′)
And 𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋(𝑠′)

And 𝑉𝜋 𝑠 = 𝑄𝜋(𝑠, 𝜋 𝑠 )

𝜋∗ 𝑠 = argmax
𝑎

𝑄∗ 𝑠, 𝑎

𝑉∗ 𝑠 = 𝑄∗ 𝑠, 𝜋∗ 𝑠 = max
𝑎

𝑄∗(𝑠, 𝑎)

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗(𝑠′)

= 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)

Bellman Equation

Again, necessary and sufficient condition for optimality!



How to Solve MDPs (Non-Exhaustive List)

 Exact

 Value Iteration

 Policy Iteration

 Linear Programming

 Approximate

 Sampling-based

 Function approximation
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How to Solve MDPs in Practice

 Call MDP solvers

 E.g., MDP toolbox in python

2/14/2024https://pymdptoolbox.readthedocs.io/en/latest/api/mdp.html48



Outline

 Multi-Armed Bandit (MAB) Problems

 Bandit Data-Driven Optimization in Food Rescue

 Markov Decision Process

 Restless Multi-Armed Bandits
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Restless Multi-Armed Bandit

 𝑁 arms

 Each arm is a 2-action MDP

 In time 𝑡, an arm is in some state

 Two possible actions: active (pull the arm), or passive (not 

pull the arm)

 Action brings the planner reward and brings the arm into a 

successor state in time 𝑡 + 1

 “Restless”: state transition happens even if the arm is not 

pulled

 Planner can observe the state of each arm, and pull 

𝛼𝑁 arms in each time step
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MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾



Example

 You take 5 courses this semester

 Each arm is a course

 Everyday, you choose two courses and spend 4 hours 

on each of them

 The state of each arm is your level of understanding 

of the course material

 If you choose a course 𝐴 in one day, your level of 

understanding for course 𝐴 ↑

 If you do not choose 𝐴 in one day, your level of 

understanding for course 𝐴 ↓ (we forget things )
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Discussion

 What real-world problems can be viewed / modeled 

as a restless MAB problem?

 Can you design a heuristic way of choosing the arms 

to pull?

2/14/2024Fei Fang52



Restless Multi-Armed Bandit

 Assuming you know the MDP associated with each 
arm, how to choose the arms to pull in each time 
step given the observed states of the arms?

 Whittle solution approach:
 Key idea:  “passive subsidy” – a hypothetical reward offered 

to the planner, in addition to the original reward function, 
for choosing the passive action

 Whittle Index: Infimum subsidy that makes the planner 
indifferent between the “active” and the “passive” actions

 Choose the arms with highest 𝑊(𝑠)
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𝑊 𝑠 = inf
𝜆
{𝜆: 𝑄𝜆 𝑠, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 = 𝑄𝜆(𝑠, 𝑎𝑐𝑡𝑖𝑣𝑒)}



Backup Slides
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Value Iteration

 Consider the finite horizon view: Pretend we have a really 

long horizon

 aka ‘Value update’, ‘Bellman backups/updates’

 Guaranteed to converge to 𝑉∗ 𝑠
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Value Iteration

Initialize 𝑉0
∗ 𝑠 ← 0

Iterate 𝑉𝑖+1
∗ 𝑠 ← max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ℙ(𝑠

′|𝑠, 𝑎)𝑉𝑖
∗ 𝑠′ ]

What is the optimal policy 𝜋∗?

Typical termination condition: difference< 𝜖

𝑉∗ 𝑠 = max
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ]

Based on state-value Bellman Equations



Policy Iteration

 Not necessary to get an accurate estimate of 𝑉∗ to 

induce 𝜋∗

 Policy iteration

 Compute optimal policy 𝜋∗ directly

 Iterate between 2 steps

 Policy Evaluation (check how good current policy is)

 Policy Improvement (get a ‘better’ policy)
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Policy Iteration

 Policy Evaluation

 Method 1: Iterative approach

 𝑉𝑖+1
𝜋 𝑠 ← 𝑅 𝑠, 𝜋(𝑠) + 𝛾 σ𝑠′ℙ(𝑠

′|𝑠, 𝑎)𝑉𝑖
𝜋 𝑠′ , 𝑉0

𝜋 𝑠 ← 0

 Method 2: Solve system of linear equations

 𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋(𝑠) + 𝛾 σ𝑠′ℙ(𝑠
′|𝑠, 𝑎)𝑉𝜋 𝑠′

 Policy Improvement

 𝜋𝑛𝑒𝑤 𝑠 ← argmax
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ℙ 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′ ]

 Note that when 𝜋 is optimal, 𝜋𝑛𝑒𝑤 is the same as 𝜋

 Policy iteration converges to the optimal policy in a finite 

number of steps

 Often converge faster than value iteration
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LinUCB

 Assume reward is a arm-dependent linear function of 

context vector + noise

 𝑟𝑡 = 𝐱𝐼𝑡,𝑡
𝑇 𝜃𝐼𝑡

∗ + 𝜖𝑡

 𝔼[𝑟𝑡] = 𝐱𝐼𝑡,𝑡
𝑇 𝜃𝐼𝑡

∗

 𝜃∗ are unknown coefficient vector associated with each arm
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