

- PRA3 due 2/22
- Course project progress report | due 2/27
- HW3 due 2/29
- Come to OH for course project discussion!

Artificial Intelligence Methods for Social Good Lecture 11 Case Study:Assist Non-Profits in Improving Maternal and Child Health

17-537 (9-unit) and 17-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u>

- Assist Non-Profits in Improving Maternal and Child Health
- Monte-Carlo Tree Search and Applications to Healthcare (Optional for this lecture)

Learning Objectives

- Understand the concept of
 - K-means clustering
 - Monte-Carlo Tree Search
- For the application problem, briefly describe
 - Significance/Motivation
 - Task being tackled
 - AI method used
 - Evaluation process and criteria

 Almost 90 percent of maternal deaths in India are avoidable if women receive the right kind of intervention

Fei Fang

6

mMitra is a free mobile voice call service by ARMMAN that sends timed and targeted preventive care information weekly/bi-weekly directly to the phones of the enrolled women through pregnancy and infancy in their chosen language and timeslot.

- Automated voice message/text sent
 - Average voice message length: I min
- But do beneficiaries listen? Does the nonprofit know?
 They know how long the beneficiaries stay on
- How to keep beneficiaries engaged?

- Non-profits can initiate service calls!
- But...limited health-worker time available
- Each week, health workers can call a limited number of beneficiaries

- Task: Choose a subset of M beneficiaries to call each week
- Simple solution: Round Robin
- Can we do better with Al?

Recap: Restless Multi-Armed Bandit

- N arms
- Each arm is a 2-action MDP
 - In time t, an arm is in some state

- Two possible actions: active (pull the arm), or passive (not pull the arm)
- Action brings the planner reward and brings the arm into a successor state in time t + 1
- "Restless": state transition happens even if the arm is not pulled
- Planner can observe the state of each arm, and pull αN arms in each time step

- Formulate the following problem as an RMAB problem: choosing a subset of K beneficiaries to call each week
- What is an arm in this context?
- What is one time step in this context?
- What does active and passive action mean?
- What are the states for the MDP of each arm?
- What is the reward for each state/action?
- How to estimate the state transition probabilities?

RMAB Formulation

- An arm: a beneficiary
- A time step: a week
- Active action (a): make a service call to the beneficiary
- Passive action (p): no call to the beneficiary

RMAB Formulation

- States: Engaging (E) and Not Engaging (NE)
 - State is known to the planner
 - If a beneficiary stays on the automated voice message for more than 30 seconds in a week, she is in state E
 - Otherwise, she is in state NE
- Reward: I if in state E, 0 if in state NE

RMAB Formulation

Transition probabilities (different for different arms)
 α can be a (active) or p (passive)

• Question: Intuitively, what is the (inequality) relationship between $P_{NE,E}^a$ and $P_{NE,E}^p$? How about $P_{E,E}^a$ and $P_{E,E}^p$?

Key Challenge: Estimate Transition Probabilities

- Historical Data D_{train}
- Each data point (f, E) corresponds one beneficiary
 - f is a static feature vector for the beneficiary: age, education level, income bracket, phone owner in the family, gestation age, number of children, preferred language, preferred slots for receiving voice messages
 - E is an episode storing the trajectory of (s, α, s') pairs for that beneficiary
- In the case with ARMMAN: 4238 beneficiaries who enrolled into the program between May-July 2020

Key Challenge: Estimate Transition Probabilities

- If we have sufficient historical data for each arm (each beneficiary): compute the empirical transition probabilities $P_{NE,E}^{a}$, $P_{NE,E}^{p}$, $P_{E,E}^{a}$ and $P_{E,E}^{p}$
- But...a beneficiary stays the program only during / around pregnancy and for a short period of time after delivery
- Impossible to get sufficient data to estimate the probabilities for each arm!

Key Challenge: Estimate Transition Probabilities

- Discuss: Why the following simple approach does not work in this problem?
 - Assume all arms share the same transition probabilities
 - Use historical data of all the beneficiaries to estimate the probabilities

Divide the beneficiaries into clusters

- Each cluster should consist of beneficiaries who are similar to each other, and we assume that they have the same transition probabilities
- For each cluster, use data from all of the beneficiaries in the cluster to estimate the probabilities

Clustering

- Clustering is a typical machine learning task
 - Unsupervised learning: learn from unlabeled data
 - Divide unlabeled data points into clusters
 - Given a dataset with each data point described by a feature vector, divide the data points into k clusters such that data points in the same cluster are similar to each other
- Commonly used approaches
 - K-Means Clustering
 - Gaussian Mixture Models

Start with K random points, treat them as the initial cluster center

20

- Start with K random points, treat them as the initial cluster center
- Expectation step (E-step): For each data point, assign it to the nearest cluster center

- Start with K random points, treat them as the initial cluster center
- Expectation step (E-step): For each data point, assign it to the nearest cluster center
- Maximization step (M-step): For each cluster, set the new cluster center to the mean/centroid of all the data points in the cluster

23

- Start with K random points, treat them as the initial cluster center
- Expectation step (E-step): For each data point, assign it to the nearest cluster center
- Maximization step (M-step): For each cluster, set the new cluster center to the mean/centroid of all the data points in the cluster
- Repeat E-step and M-step until the assignment of the data points do not change anymore

24

https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/ blob/master/notebooks/05.11-K-Means.ipynb 2/21/2024

How to measure the quality of clustering?

- Use some error function
- Option I: sum of squared errors

$$\sum_{k=1}^{K} \sum_{i:i \text{ in cluster } k} (f_i - c^k)^2$$

Option 2: Root Mean Square Error (RMSE)

$$\sqrt{\frac{\sum_{i} (f_i - \hat{f}_i)^2}{N}}$$

 $\vdash \mathsf{Higher} \ K \to \mathsf{Lower} \ \mathsf{error}$

K-means clustering in practice

```
[ ] from sklearn.cluster import KMeans
    kmeans = KMeans(n_clusters=4)
    kmeans.fit(X)
    y_kmeans = kmeans.predict(X)
```

Divide unlabeled dataset X into 4 clusters

K-Means Clustering for Our Problem

- Approach I: Features-Only clustering (FO)
 - > Directly use static features f for clustering
 - Reasonable but not performing well

K-Means Clustering for Our Problem

- Approach 2: Feature + All Probabilities (FAP)
 - Two-level approach
 - Step I: use a rule-based method to divide beneficiaries into (a large number of) buckets
 - Step 2: estimate transition probabilities for each bucket
 - Step 3: use the estimated transition probabilities as features for each bucket, cluster the buckets into K clusters
- Approach 3: Feature + Passive Probabilities
 - Same as Approach 2 (FAP), except that it only uses passive action probabilities in step 3 clustering

K-Means Clustering for Our Problem

- Approach 4: Passive Transition-Probability based Clustering (PPF)
 - Step I: For each beneficiary, use historical data to estimate transition probabilities for passive action
 - Step 2: Use k-means clustering to identify cluster centers
 - Step 3: learn a map from feature vector f to cluster assignment (now a supervised learning problem!) using random forest

Evaluation of Clustering Methods

- Compare RMSE and standard deviation of cluster sizes
 - We want low error and balanced clusters sizes
 - Tested 20 and 40 clusters

Clustering	Average RMSE		Standard Deviation	
Method	k = 20	$\mathbf{k} = 40$	k = 20	k = 40
FO	0.229	0.228	143.30	74.22
FPP	0.223	0.222	596.19	295.01
FAP	0.224	0.223	318.46	218.37
PPF	0.041	0.027	145.59	77.50

Evaluation of Clustering Methods

Visualization of cluster centers

Select Beneficiaries in Each Time Step

Recap: Whittle Index: Infimum subsidy that makes the planner indifferent between the "active" and the "passive" actions

$$W(s) = \inf_{\lambda} \{\lambda: Q_{\lambda}(s, passive) = Q_{\lambda}(s, active)\}$$

• Choose the arms with highest W(s)

Experimental Study

Compare the following cases

- Control group (Current Standard of Care): Beneficiaries could initiate a service call with trained health workers by request, but no calls initiated by the non-profits
- RMAB-based method: use 40 clusters, PPF clustering
- Alternative method: Round Robin
- How to run a field study?

33

Experimental Study

- D_{test}: beneficiaries registered in the program between Feb 16, 2021 and March 15, 2021
- 23003 beneficiaries in total
 - Randomly distributed across 3 groups: CSOC group, Round Robin group, RMAB group
- State distribution in week 0 of the study (Apr 19 -Apr 26, 2021)

Group	Engaging (E)	Non-Engaging (NE)	Total
RMAB	3571	4097	7668
RR	3647	4021	7668
CSOC	3661	4006	7667

Experimental Study

RMAB method leads to more engagement drops prevented!

Overall Pipeline

Fei Fang

36

Learning Objectives

- Understand the concept of
 - K-means clustering
 - Monte-Carlo Tree Search
- For the application problem, briefly describe
 - Significance/Motivation
 - Task being tackled
 - AI method used
 - Evaluation process and criteria

- General framework to make online decision in sequential decision making problems
 - E.g., online planning in MDPs, to determine game plays in Go, chess, video games etc
- Not only applicable to MDPs, but also other domains that cannot be modeled as MDPs
 - The idea of Q value can still be used

- MCTS for single player setting: online planning in an unknown environment
- You are now in some state, need to choose an action, but you know nothing about the environment
- Helper: a simulator tells you your available actions, and reward after you take the action

- Build a search tree node by node
 - Node: state; Edge: available actions
- Repeat: Select \rightarrow Expand \rightarrow Simulate \rightarrow Backpropagate

- Build a search tree node by node
 - Node: state; Edge: available actions
- Repeat: Select \rightarrow Expand \rightarrow Simulate \rightarrow Backpropagate

Simplest MCTS

- In each iteration
 - Select: Choose the branch with the highest value
 - Expand:Add one node by randomly selecting an action
 - Simulate: Uniform random rollout
 - Backpropagate: update mean return (average accumulated reward) along the path
- Output: action correspond to branch with highest value at the root node after K iterations

Q:Assume the numbers in the nodes represent the mean return, which leaf node will be expanded when using the simplest MCTS?

Fei Fang

Q:Assume the following tree is built for the Atari game, the numbers in the nodes represent the total number of times we win / the total number of times we visit the state, which nodes will be updated in the backpropagation step?

Fei Fang

Q:Assume the following tree is built for the Atari game, the numbers in the nodes represent the total number of times we win / the total number of times we visit the state, which nodes will be updated in the backpropagation step?

Recap: Upper Confidence Bound in MAB

- UCBI Algorithm:
 - Always choose the arm with the highest upper confidence bound defined as $\mu_{UB}^k = \widehat{\mu_k} + \sqrt{\frac{2 \ln t}{N(k)}}$
 - Intuition: If μ_{UB}^k is large, either arm k is a good arm or N(k) is small (not enough data is gathered)
 - General principle: optimism in the face of uncertainty

- Upper Confidence Bounds for Trees (UCT)
 - For each node, keep track of estimated action value and visit count: Q(s, a) and N(s, a)
 - Select: Balance exploration vs exploitation:
 - If some actions never been chosen, randomly choose among them
 - Choose branch with highest Upper Confidence Bounds (UCB):

$$Q^{\oplus}(s,a) = Q(s,a) + c \sqrt{\frac{\ln N(s)}{N(s,a)}}$$

- Upper Confidence Bounds for Trees (UCT)
 - For each node, keep track of estimated action value and visit count: Q(s, a) and N(s, a)
 - Select: Balance exploration vs exploitation:
 - If some actions never been chosen, randomly choose among them
 - Choose branch with highest Upper Confidence Bounds (UCB):

$$Q^{\bigoplus}(s,a) = Q(s,a) + c \sqrt{\frac{\ln N(s)}{N(s,a)}}$$

back prop Game Ger! (

Q:Assume the numbers in the nodes represent the Q(s,a) / N(s,a), which leaf node will be expanded when using UCT with c = 10000?

$$\sqrt{N}$$
Fei Fang

More advanced MCTS

- Other advanced options:
 - Simulate: Terminate after T_0 steps and estimate the reward
 - Expand:Add more nodes to the tree
 - Output: Optimal action at root node, as well as Q and N in the subtree corresponds to the optimal action
 - Initialize search tree with domain knowledge

Example Application

- Steering immune system adaptation
 - Use MTCS to design a treatment plan, which steer T cell differentiation towards regulatory T cells or effector T cells
 - Have access to a leading T cell simulator
 - State: assignment of Boolean values to all the variables
 - Example action: activating or inhibiting cytokines, e.g., CD28, stimulating the T cell receptor

2/21/2024

- Field Study in Deploying Restless Multi-Armed Bandits: Assisting Non-Profits in Improving Maternal and Child Health
- Sequential Planning for Steering Immune System
 Adaptation

Backup Slides

MCTS for Two-Player Complete Information Games

Existing code package: mctspy (limited functionality)

```
For Tic-Tac-Toe
With mctspy 0.1.1
```

```
import numpy as np
from mctspy.tree.nodes import TwoPlayersGameMonteCarloTreeSearchNode
from mctspy.tree.search import MonteCarloTreeSearch
from mctspy.games.examples.tictactoe import TicTacToeGameState
```

```
state = np.zeros((3,3))
initial_board_state = TicTacToeGameState(state = state, next_to_move=1)
```

```
root = TwoPlayersGameMonteCarloTreeSearchNode(state = initial_board_state)
mcts = MonteCarloTreeSearch(root)
best_node = mcts.best_action(10000)
```

- Often used for clustering
- Group scene images into three groups, check average pixel intensity of Blue in each group

- Gaussian (Normal) distribution: most commonly used
 - Mean
 - Variance
 - Gaussian distribution: $X \sim \mathcal{N}(\mu, \sigma^2)$

•
$$f(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Model: Mixture of Gaussian
 - Distribution of each class/group/cluster: Close to Gaussian
 - Aggregated distribution: Combination of weighted Gaussians
 - Weight: Relative proportion of each class

- Predict output given a hard-coded GMM
 - Input \rightarrow Check probability for each group \rightarrow Output
 - Check probability: Bayes' Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Learn/Train GMM
 - Given a set of data
 - Find the weight, mean and variance of each Gaussian component (Expectation Maximization algorithm)
 - Code packages: sklearn (Python), fitgmdist (MATLAB)

Poll I: Gaussian Mixture Models

- Given a GMM for a corpus of images as follows, with the average blue intensity as the only feature used
 - > 30% images belong group $I: \mathcal{N}(0.2, 0.1)$
 - > x% images belong to group 2: $\mathcal{N}(0.8, 0.05)$
 - > y% images belong to group 3: $\mathcal{N}(0.5, 0.1)$
 - x and y are unknown
 - For an image whose average blue intensity is 0.7, which group does it belong to?
 - Group I
 - Group 2
 - Group 3
 - Cannot be determined