
Reminders

 Course project progress report 1 due 2/27 → 2/29

 HW3 due 2/29

 PRA4 due 3/14

 Come to OH for course project discussion!
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Outline

 Recap: Markov Decision Process (MDP)

 POMDP and Ranger Patrol Problem

 Reinforcement Learning (RL)

 Q-Learning

 Policy Gradient
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Learning Objectives

 Understand the concept of

 Reinforcement Learning

 Describe the following algorithms

 Q-Learning

 𝜖-Greedy

 Policy Gradient

 For the adaptive ranger patrol problem, understand

 Motivation

 Task being solved

 MDP Model for the problem
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Recap: Markov Decision Process (MDP)

 Special case of sequential decision-making problems

 MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾
 𝑆: set of states, 𝑠𝑡 ∈ 𝑆 (where can agent be?)

 𝐴: set of actions, 𝑎𝑡 ∈ 𝐴 (what can agent do?)

 𝑇: transition function 𝑇 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 = ℙ 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

(what happens next?)

 𝑅: reward function 𝑟𝑡 = 𝑅 𝑠𝑡 or 𝑅(𝑠𝑡 , 𝑎𝑡) or 

𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) (what do I gain?) 

 𝛾 ∈ [0, 1] (discount factor)
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Next state only depends on the current state, not previous states! (Markovian)



Recap: Markov Decision Process (MDP)

 MDP = 𝑆, 𝐴, 𝑇, 𝑅, 𝛾

 (Deterministic) Policy 𝜋: 𝑆 → 𝐴
 Maps state to action, defines a plan

 Given a policy 𝜋, we can sample history ℎ =
{𝑠0, 𝑎0, 𝑠1, 𝑎1, … }

 Goal: find 𝜋 to maximize utility
 Expected

 𝜋∗ = argmax𝜋𝔼ℎ~𝜋 σ𝑡 𝛾𝑡𝑅 𝑠𝑡, 𝜋 𝑠𝑡

 Myopic strategy does not work: 𝑎𝑡 affects future states
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Recap: Value Function

 The value function of a given policy 𝜋 describes the 

expected accumulated reward with discount starting 

from a state

𝑉𝜋 𝑠 = 𝔼[෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠𝑡, 𝜋 𝑠𝑡 ]

Where 𝑠0 = 𝑠

Sometimes called state value function or 𝑉-value 

function
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Recap: Q-Value Function

 Similar to state value function 𝑉𝜋(𝑠), but defined on 

state-action pair

 𝑄𝜋(𝑠, 𝑎): expected total reward from state 𝑠 onward 

if taking action 𝑎 in state 𝑠, and follow policy 𝜋
afterward
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That is 𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋(𝑠′)

Obviously 𝑉𝜋 𝑠 = 𝑄𝜋(𝑠, 𝜋 𝑠 )

So 𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑄𝜋(𝑠′, 𝜋 𝑠′ )



Recap: Bellman Equation

 𝑉∗ 𝑠 , 𝑄∗ 𝑠, 𝑎 satisfy the following Bellman Equation
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𝑉∗ 𝑠 = max
𝑎∈𝐴

 [𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)



Outline

 Recap: Markov Decision Process (MDP)

 POMDP and Ranger Patrol Problem

 Reinforcement Learning (RL)

 Q-Learning

 Policy Gradient
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Partially Observable MDP (POMDP)

 POMDP = 𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾
 Ω: A set of possible observations

 𝑂: Observation probabilities: 𝑜𝑡 ∼ 𝑂(𝑜|𝑠𝑡+1)

 Agent is at state 𝑠𝑡 (unknown to agent), takes action 𝑎𝑡, gets 

reward 𝑟𝑡, ends up at state 𝑠𝑡+1, and observes 𝑜𝑡
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Example
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Actions = {Up, Down, Left, Right}

MDP = 𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾

Ω ={Dark, Light}



Example: Ranger Patrol with Real-Time Information
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Example: Ranger Patrol with Real-Time Information
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Animal Footprint Tiger Sign Lighter



Example: Ranger Patrol with Real-Time Information

 Poachers move in the protected area and place 

snares (poaching tool)

 Rangers patrol in protected areas to combat 

poaching

 How should rangers react to real-time information?

Footprints
Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan 

Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19
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POMDP Model for Ranger Patrol

Ranger’s view

Footprints of ranger

Snare

Footprints of poacher

Poacher

Features

START

POINT
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POMDP Model for Ranger Patrol

 Assume the heuristic strategy used by poacher is 

 Randomly move towards one of the 4 neighboring cells

 Place snare in each cell he visits with probability 0.3

 Assume the ranger gets +3 if catches poacher, +1 if 

removes snare, and -0.1 for every step regardless

 Ranger can choose to stand still

 Discussion: How to formulate the problem as a 

POMDP?

2/29/2024Fei Fang17

POMDP = 𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾



POMDP Model for Ranger Patrol

 State: 

 Action: 

 Transition:

 Reward: 

 Observation: 

 Observation probability:
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POMDP Model for Ranger Patrol

 State: Location of poacher, ranger, snares, footprints in 

all locations

 Action: Up, Down, Left, Right, Still

 Transition: Determined by poacher’s heuristic 

strategy

 Reward: Determined by the reward rule

 Observation: Location of ranger, footprint, snare

 Observation probability: With prob. 1, observe the 

ranger location and the footprint/snare in the ranger 

location
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Outline
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Reinforcement Learning

 Learn an optimal policy for the environment without 

having a complete model
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Don’t have a complete 
model of the environment! 

Have to actually learn what 
happens if take an action in a 

state

Learn through Trial and Error

Don’t know 𝑇 or 𝑅 (or just hard to enumerate)



Reinforcement Learning

 Learn the optimal policy without knowing 𝑇 or 𝑅

 Model-based RL

 Build a model (estimate 𝑇 and 𝑅) then find optimal policy

 Model-free RL

 Directly evaluate without building a model
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Model-Based RL with Random Actions

 Choose actions randomly

 Estimate 𝑇(⋅) and 𝑅(⋅) from sample trials (average 

counts)

 Use estimated 𝑇(⋅) and 𝑅(⋅) to compute estimate of 

optimal values and optimal policy (i.e., solve the MDP 

with estimated 𝑇(⋅) and 𝑅(⋅))
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Model-Based RL with Random Actions

 Consider a trial
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Environment

Policy: Choose action randomly

Estimate 𝑇 2,1 |(2,1) ? 𝑅 2,1 , 𝑡𝑟𝑖𝑔ℎ𝑡 ?

Start at (1,1)

𝑠 = (1,1) action=tright (try going right) based on 𝜋

Reward= −0.01; End up at 𝑠′ = (2,1)

𝑠 = (2,1) action=tright (try going right) based on 𝜋

Reward= −0.01; End up at 𝑠′ = (2,1)

𝑠 = (2,1) action=tright (try going right) based on 𝜋

Reward= −0.01; End up at 𝑠′ = (3,1)

𝑠 = (3,1) action=tright (try going right) based on 𝜋

Reward= −0.01; End up at 𝑠′ = (4,1)

𝑠 = (4,1) action=tup (try going up) based on 𝜋

Reward= −0.01; End up at 𝑠′ = (4,2)

𝑠 = (4,2) No action available. Reward= −1; Terminate



Model-Free RL

 Can we find the optimal policy without explicitly 

estimating 𝑇(⋅) and 𝑅(⋅)?

 Value-based method

 Q-Learning

 Policy-based method + Actor-critic method

 Policy-gradient

 Advantage Actor-Critic (A2C)
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Q-Learning

 Q-Learning

 Start with some random guess of optimal Q values, ෠𝑄∗ 𝑠, 𝑎

 Agent interact with the environment following some policy 

𝜋 (no need to be optimal)

 In one step of a trial: agent is in state 𝑠, take action 𝑎 =
𝜋(𝑠), get reward 𝑟, end up in state 𝑠′

 Update the estimated optimal Q value at (𝑠, 𝑎) with
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Recall 𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄∗(𝑠′, 𝑎′)

෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′ )



Q-Learning

 Given estimated value of 𝑄∗ 𝑠, 𝑎 , derive estimate of 

optimal policy
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ො𝜋∗ 𝑠 = argmax
𝑎

෠𝑄∗ 𝑠, 𝑎



Q-Learning Example
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S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

6 states, S1,..S6

12 actions 𝑎𝑖𝑗

Deterministic state transitions (but you don’t know this beforehand)

𝑅 = 100 in S6, 𝑅 = 0 otherwise (again, you don’t know this)

Use 𝛾 = 0.5, 𝛼 =  1
Random behavior policy



Q-Learning Example
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S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

Start at S1, available actions: 𝑎12, 𝑎14

Probability of choosing each of them: 0.5
Choose 𝑎12

Get reward 0, get to state S2

Update state-value function

෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

෠𝑄∗ 𝑆1, 𝑎12 ← 1 − 𝛼 ෠𝑄∗ 𝑆1, 𝑎12 + 𝛼 𝑟 + 𝛾 max
𝑎′∈ 𝑎21,𝑎23,𝑎25

෠𝑄∗ 𝑆2, 𝑎′ = 0

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 0



Q-Learning Example
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෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

At S2, available actions: 𝑎21, 𝑎23, 𝑎25

Probability of choosing each of them: 
1

3

Choose 𝑎23

Get reward 0, get to state S3

Update state-value function

෠𝑄∗ 𝑆2, 𝑎23 ← 1 − 𝛼 ෠𝑄∗ 𝑆2, 𝑎23 + 𝛼 𝑟 + 𝛾 max
𝑎′∈ 𝑎32,𝑎36

෠𝑄∗ 𝑆3, 𝑎′ = 0

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 0



Q-Learning Example
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෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

At S3, available actions: 𝑎32, 𝑎36

Probability of choosing each of them: 0.5
Choose 𝑎36

Get reward 0, get to state S6

Update state-value function

෠𝑄∗ 𝑆3, 𝑎36 ← 1 − 𝛼 ෠𝑄∗ 𝑆3, 𝑎36 + 𝛼 𝑟 + 𝛾 max
𝑎′∈ 𝑛𝑢𝑙𝑙

෠𝑄∗ 𝑆6, 𝑎′ = 0

S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 0



Q-Learning Example
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෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

Terminal state, get reward 100, ෠𝑄∗ 𝑆6, 𝑛𝑢𝑙𝑙 ← 100

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 0
→ 100



Q-Learning Example
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S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

Start a new episode!

Start at S2, available actions: 𝑎21, 𝑎23, 𝑎25

Probability of choosing each of them: 
1

3

Choose 𝑎23

Get reward 0, get to state S3

Update state-value function

෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 100

෠𝑄∗ 𝑆2, 𝑎23 ← 1 − 𝛼 ෠𝑄∗ 𝑆2, 𝑎23 + 𝛼 𝑟 + 𝛾 max
𝑎′∈ 𝑎32,𝑎36

෠𝑄∗ 𝑆3, 𝑎′ = 0



Q-Learning Example
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෠𝑄∗ 𝑠, 𝑎 ← 1 − 𝛼 ෠𝑄∗ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
𝑎′

෠𝑄∗ 𝑠′, 𝑎′

𝑅 = 100 in S6, 𝛾 = 0.5, 𝛼 =  1

At S3, available actions: 𝑎32, 𝑎36

Probability of choosing each of them: 0.5
Choose 𝑎36

Get reward 0, get to state S6

Update state-value function

෠𝑄∗ 𝑆3, 𝑎36 ← 1 − 𝛼 ෠𝑄∗ 𝑆3, 𝑎36 + 𝛼 𝑟 + 𝛾 max
𝑎′∈ 𝑛𝑢𝑙𝑙

෠𝑄∗ 𝑆6, 𝑎′ = 50

S1 S2 S3

S4 S5 S6: END

a14

a41
a45

a54

a25

a52

a56

a21

a12 a23

a32 a36

෠𝑄∗(𝑆1, 𝑎12) 0

෠𝑄∗(𝑆1, 𝑎14) 0

෠𝑄∗(𝑆2, 𝑎21) 0

෠𝑄∗(𝑆2, 𝑎25) 0

෠𝑄∗(𝑆2, 𝑎23) 0

෠𝑄∗(𝑆3, 𝑎32) 0

෠𝑄∗(𝑆3, 𝑎36) 0
→ 50

෠𝑄∗(𝑆4, 𝑎41) 0

෠𝑄∗(𝑆4, 𝑎45) 0

෠𝑄∗(𝑆5, 𝑎52) 0

෠𝑄∗(𝑆5, 𝑎54) 0

෠𝑄∗(𝑆5, 𝑎56) 0

෠𝑄∗(𝑆6, 𝑛𝑢𝑙𝑙) 100



Q-Learning

 Impact of 𝛼

 Implication: Let 𝛼 decrease over time
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Exploration vs Exploitation
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Simple Approach: 𝜖-Greedy

 With probability 1 − 𝜖

 Choose action 𝑎 = argmax
𝑎′

෠𝑄∗(𝑠, 𝑎′)

 With probability 𝜖
 Select a random action

 For Q-learning 

 Guaranteed to compute optimal policy 𝜋∗ based on 
෠𝑄∗(𝑠, 𝑎) given enough samples with 𝜖 > 0

 However, the policy the agent is following is never the same 

as 𝜋∗ (because it select a random action with probability 𝜖)
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Policy Gradient

 Key ideas

 Parameterize the policy

 Update the parameters towards the direction that increase 

the objective function (e.g., expected reward)
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Similar to gradient ascent algorithm



Example

 𝜋 = 𝜋𝜃 where 𝜃 ∈ ℝ4

 𝑞𝑘 =
𝑒𝜃𝑘

σ𝑗 𝑒
𝜃𝑗

 Goal: Find 𝜃 that maximizes 𝐽𝜃 (now a 

standard optimization problem!) where 𝐽𝜃

is often chosen to be 𝐽𝜃 = 𝔼𝑠~𝜌𝜋𝜃
[𝑉𝜋(𝑠)]

where 𝜌𝜋𝜃
is the stationary distribution

 Policy gradient update (gradient ascent): 
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Environment

Policy

𝜃𝑖+1 ← 𝜃𝑖 + 𝛼𝛻𝜃𝐽𝜃 



Policy Gradient

 Challenge: hard to compute the gradient w.r.t. policy 

parameters due to uncertainties in MDPs

 Finite difference methods

 Policy gradient theorem
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Policy Gradient – Policy Gradient Theorem

 Estimate gradient through sampling

 Sample possible histories

 Compute gradient as average value of 

𝑄𝜋𝜃(𝑠, 𝑎)𝛻𝜃 log 𝜋𝜃 𝑠, 𝑎

 How to compute 𝑄𝜋𝜃(𝑠, 𝑎)? 

 REINFORCE: Directly use discounted reward from sampled history
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𝛻𝜃𝐽 𝜃 = 𝔼𝑠,𝑎~𝜋𝜃
[𝑄𝜋𝜃 𝑠, 𝑎 𝛻𝜃 log 𝜋𝜃 𝑠, 𝑎 ]

𝐽 𝜃 = 𝔼 𝑉𝜋 𝑠



REINFORCE

 Similar to stochastic gradient descent

 Use one sample to compute gradient and update 

parameters
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REINFORCE

Initialize 𝜃 arbitrarily

For each episode 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 ~𝜋𝜃

For 𝑡 = 1 … 𝑇 − 1
𝜃 ← 𝜃 + 𝛼𝛻𝜃 log 𝜋𝜃 𝑠𝑡 , 𝑎𝑡 𝑣𝑡

(𝑣𝑡 is the discounted reward starting from time 𝑡)

Return 𝜃



Example
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𝑞𝑘 =
𝑒𝜃𝑘

σ𝑗 𝑒𝜃𝑗 𝜃 ← 𝜃 + 𝛼𝛻𝜃 log 𝜋𝜃 𝑠𝑡, 𝑎𝑡 𝑣𝑡

Environment

Start at (1,1)

𝑠 = (1,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (2,1)

𝜋𝜃 𝑠1, 𝑎1 =
𝑒𝜃𝑅

𝑒𝜃𝑅 + 𝑒𝜃𝐿 + 𝑒𝜃𝑈 + 𝑒𝜃𝐷

𝜕 log 𝜋𝜃 𝑠1, 𝑎1

𝜕𝜃𝑈
=

𝑒𝜃𝑅 + 𝑒𝜃𝐿 + 𝑒𝜃𝑈 + 𝑒𝜃𝐷

𝑒𝜃𝑅
× 𝑒𝜃𝑅 × (−1)

1

𝑒𝜃𝑅 + 𝑒𝜃𝐿 + 𝑒𝜃𝑈 + 𝑒𝜃𝐷 2
× 𝑒𝜃𝑈 = −

1

4

𝑣𝑡 = −1.05

𝜃𝑈 = 𝜃𝑈 + 0.5 × −
1

4
× (−1.05)



Reinforcement Learning in Practice

 Q-Learning and Proximal Policy Optimization (or 

PPO, a policy gradient-based approach) are commonly 

used

 Existing code packages: 

 OpenAI Gym: https://github.com/openai/gym

 Rllib: https://docs.ray.io/en/latest/rllib/index.html
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Summary
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Reinforcement Learning (RL)

Model-based RL

Estimate 𝑇 and 𝑅 

through sampling

Model-free RL

Q-Learning (with some 

exploratory policy), 

Policy gradient



References and Additional Resources
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Other Resources

 http://courses.csail.mit.edu/6.825/fall05/rl_lecture/rl_exa

mples.pdf

 http://www.cs.cmu.edu/afs/cs/academic/class/15780-

s16/www/slides/rl.pdf

 http://incompleteideas.net/book/bookdraft2017nov5.pdf

 https://towardsdatascience.com/a-review-of-recent-

reinforcment-learning-applications-to-healthcare-

1f8357600407

 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

 https://arxiv.org/pdf/1312.5602.pdf
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http://courses.csail.mit.edu/6.825/fall05/rl_lecture/rl_examples.pdf
http://courses.csail.mit.edu/6.825/fall05/rl_lecture/rl_examples.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/rl.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/rl.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Backup Slides

2/29/2024Fei Fang49



Bellman Equation Explained

 Let 𝑉𝑡
∗ 𝑠 be the maximal expected total reward 

assuming
 We begin in 𝑠

 We have 𝑡 time steps remaining

 Necessary condition

𝑉𝑡
∗ 𝑠 = max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

ℙ(s′|𝑠, 𝑎)𝑉𝑡−1
∗ s′ ]

𝑉0
∗ = 0

 Pick the action which maximizes current + future 
reward (assuming continued optimal behavior)
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Bellman Equation Explained

 Value function 𝑉∗(𝑠) can be viewed as 𝑉𝑡
∗ 𝑠 as 𝑡 → ∞

 Bellman Equation

 𝑉∗ 𝑠 = max
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ]
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𝑉𝑡
∗ 𝑠 = max

𝑎∈𝐴
 [𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

ℙ(s′|𝑠, 𝑎)𝑉𝑡−1
∗ s′ ]

Fixed point



Value Iteration

 Consider the finite horizon view: Pretend we have a really 

long horizon

 aka ‘Value update’, ‘Bellman backups/updates’

 Guaranteed to converge to 𝑉∗ 𝑠
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Value Iteration

Initialize 𝑉0
∗ 𝑠 ← 0

Iterate 𝑉𝑖+1
∗ 𝑠 ← max

𝑎∈𝐴
[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ ℙ(𝑠′|𝑠, 𝑎)𝑉𝑖

∗ 𝑠′ ]

What is the optimal policy 𝜋∗?

Typical termination condition: difference< 𝜖

𝑉∗ 𝑠 = max
𝑎∈𝐴

 [𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

ℙ 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ ]

Based on state-value Bellman Equations



Policy Iteration

 Not necessary to get an accurate estimate of 𝑉∗ to 

induce 𝜋∗

 Policy iteration

 Compute optimal policy 𝜋∗ directly

 Iterate between 2 steps

 Policy Evaluation (check how good current policy is)

 Policy Improvement (get a ‘better’ policy)
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Policy Iteration

 Policy Evaluation

 Method 1: Iterative approach

 𝑉𝑖+1
𝜋 𝑠 ← 𝑅 𝑠, 𝜋(𝑠) + 𝛾 σ𝑠′ ℙ(𝑠′|𝑠, 𝑎)𝑉𝑖

𝜋 𝑠′ , 𝑉0
𝜋 𝑠 ← 0

 Method 2: Solve system of linear equations

 𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋(𝑠) + 𝛾 σ𝑠′ ℙ(𝑠′|𝑠, 𝑎)𝑉𝜋 𝑠′

 Policy Improvement

 𝜋𝑛𝑒𝑤 𝑠 ← argmax
𝑎∈𝐴

[𝑅 𝑠, 𝑎 + 𝛾 σ𝑠′ ℙ 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′ ]

 Note that when 𝜋 is optimal, 𝜋𝑛𝑒𝑤 is the same as 𝜋

 Policy iteration converges to the optimal policy in a finite 

number of steps

 Often converge faster than value iteration
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Policy Gradient – Policy Gradient Theorem

 Basis: Given function 𝑓(⋅) and discrete-valued random 

variable 𝑿~𝑝(𝒙|𝜽)

 Can be approximated by sampling 𝑋 and compute 

average 𝑔(𝑋)！
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𝑔(𝑋)

𝛻𝜽𝔼𝑿 𝑓 𝑿 = 𝔼𝑿 𝑓 𝑿 𝛻𝜽 log 𝑝(𝑿|𝜽)



Policy Gradient – Policy Gradient Theorem

 Basis: Given function 𝑓(⋅) and discrete-valued random 

variable 𝑿~𝑝(𝒙|𝜽)

 Can be approximated by sampling 𝑋 and compute 

average 𝑔(𝑋)！
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𝑔(𝑋)

𝛻𝜽𝔼𝑿 𝑓 𝑿 = 𝔼𝑿 𝑓 𝑿 𝛻𝜽 log 𝑝(𝑿|𝜽)

Derivation: 𝛻𝜽𝔼𝑿 𝑓 𝑿 = 𝛻𝜽 σ𝒙 𝑝(𝒙|𝜽)𝑓 𝒙 = σ𝒙 𝑓(𝒙)𝛻𝜽𝑝(𝒙|𝜽)

= ෍

𝒙

𝑓 𝒙 𝑝(𝒙|𝜽)
𝛻𝜽𝑝 𝒙 𝜽

𝑝 𝒙 𝜽

= ෍

𝒙

𝑓 𝒙 𝑝(𝒙|𝜽)𝛻𝜽 log 𝑝 𝒙 𝜽

= 𝔼𝑿 𝑓 𝑿 𝛻𝜽 log 𝑝(𝑿|𝜽)



Policy Gradient – Policy Gradient Theorem

 Given 𝛻𝜽𝔼𝑿 𝑓 𝑿 = 𝔼𝑿 𝑓 𝑿 𝛻𝜽 log 𝑝(𝑿|𝜽) , rewrite 

the gradient of the objective function 𝐽 𝜃 with respect 

to policy parameters

 Estimate gradient through sampling

 Sample possible histories

 Compute gradient as average value of 𝑄𝜋𝜃(𝑠, 𝑎)𝛻𝜃 log 𝜋𝜃 𝑠, 𝑎

 How to compute 𝑄𝜋𝜃(𝑠, 𝑎)? 

 REINFORCE: Directly use discounted reward from sampled history
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𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝔼𝑠~𝜋𝜃
𝑉𝜋 𝑠 = 𝛻𝜃𝔼𝑠~𝜋𝜃

෍

𝑎

𝜋𝜃 𝑠, 𝑎 𝑄𝜋𝜃(𝑠, 𝑎)

𝛻𝜃𝐽 𝜃 = 𝔼𝑠,𝑎~𝜋𝜃
[𝑄𝜋𝜃(𝑠, 𝑎)𝛻𝜃 log 𝜋𝜃 𝑠, 𝑎 ]



Example

 Consider a trial
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Environment

Start at (1,1)

𝑠 = (1,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (2,1)

𝑠 = (2,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (2,1)

𝑠 = (2,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (3,1)

𝑠 = (3,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (4,1)

𝑠 = (4,1) action=tup (try going up)

Reward= −0.01; End up at 𝑠′ = (4,2)

𝑠 = (4,2) No action available. Reward= −1; Terminate

𝛾 = 1, 𝛼 = 0.5, 𝜃 is initialized to 0, how to update 𝜃?

𝑞𝑘 =
𝑒𝜃𝑘

σ𝑗 𝑒𝜃𝑗 𝜃 ← 𝜃 + 𝛼𝛻𝜃 log 𝜋𝜃 𝑠𝑡, 𝑎𝑡 𝑣𝑡



Example
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𝑞𝑘 =
𝑒𝜃𝑘

σ𝑗 𝑒𝜃𝑗 𝜃 ← 𝜃 + 𝛼𝛻𝜃 log 𝜋𝜃 𝑠𝑡, 𝑎𝑡 𝑣𝑡

Environment

Start at (1,1)

𝑠 = (1,1) action=tright (try going right)

Reward= −0.01; End up at 𝑠′ = (2,1)

𝜋𝜃 𝑠1, 𝑎1 =

𝜕 log 𝜋𝜃 𝑠1, 𝑎1

𝜕𝜃𝑈
=

𝑣𝑡 =

𝜃𝑈 = 𝜃𝑈 +
Discussion: How is it different 

for the update of 𝜃𝑅?
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