Reminders

» TA’s announcement on course project report |

» PRA4 due 3/14

» Course project progress report 2 due 3/26

» Come to OH for course project discussion!
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Outline

» Deep Reinforcement Learning
Deep Q Learning for Ranger Patrol Planning

» A Spatio-Temporal Reinforcement Learning Algorithm
for Bike Repositioning
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Learning Objectives

» Briefly describe
Deep Q Learning

» For the adaptive ranger patrol problem, understand
Method used to solve the problem
» For the bike repositioning problem, understand

Motivation

Problem to be solved
Method
Evaluation

4 Fei Fang 3/11/2024



Recap: Q-Learning Q*(s,a) = R(s) + )/Z P(s'|s, a) maa}XQ*(S’, &)

» Q-Learning
Maintain a Q table

Start with some random guess of optimal Q values, Q*(s, a)

Agent interact with the environment following some policy
7 (no need to be optimal)

In one step of a trial: agent is in state s, take action a =
1(s), get reward r, end up in state s’

Update the estimated optimal Q value at (s, a) with

Q*(s,a) « 1 —a)Q*(s,a) + a(r + y max Q*(s',a")
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Recap: Policy Gradient

J(0) = E[VT(s)]
Vo] (0) = Es 41y [Q70(s,a) Vg logmg (s, a)]

» Estimate gradient through sampling
Sample possible histories

Compute gradient as average value of
Q™6 (s,a)Vglogmy(s,a)
How to compute Q™9 (s, a)?
REINFORCE: Directly use discounted reward from sampled history

6 Fei Fang 3/11/2024



Deep Q-learning playing Atari

Learn to Play Atari Games

https://youtu.be/V 1 eYniJORnk?t=20
7 Fei Fang 3/11/2024



https://youtu.be/V1eYniJ0Rnk?t=20
https://youtu.be/V1eYniJ0Rnk?t=20
https://youtu.be/V1eYniJ0Rnk?t=20

Deep Q-Networks

» When there are too many states, we cannot use a
tabular approach to store and update the Q values
based on the update rule

Q"(s,a) « 1 - )Q"(s,a) + a(r +ymax Q" (s, a’))

» Deep-Q networks

Use a neural network to approximate the Q-value function

8 Fei Fang 3/11/2024



Recall: Neural Networks

» Feedforward Neural Network
x € R™ - layers of units > y = fp(x) € Ror € RM

X
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Mdd en layers
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output layer
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Deep-Q networks

» Input: a vector that describes the state

» Output: a vector that contains the estimated Q-value
for each valid action

» Can use convolutional layers as well

input layer {
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Train the Q-Network

» Iteratively update network parameters 6 through a

gradient step towards minimizing loss function
A~ 2
L(8) = Egq,0[(Q(s,al0) —y)]

y is the target value, which is computed as
y =7+ ymax Q(s',a’)
a

Q(s',a’) is a target Q function whose parameters are
periodically updated with the most recent 6

Il Fei Fang
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Deep Q-Learning with Experience Replay

» Experience replay: Store the agent’s experience at
each time step e; = (S¢, Ay, 1, Sg41) in a data-set D =
eq, €,, ..., ey, pooled over many episodes into a replay
memory

» In each iteration, randomly sample experiences from
D, use them to update parameters in the J network

» After parameter update, choose an action based on
e —Greedy

12 Fei Fang 3/11/2024



Deep Q-Learning with Experience Replay for Atari Games

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function ) with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢1 = ¢(s1)
fort =1,7do
With probability € select a random action a;
otherwise select a; = max, Q*(o(st), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set s;11 = S¢, at, 141 and preprocess ¢y = G(S¢y1)
Store transition (¢¢, a;, r¢, opy1) in D
Sample random minibatch of transitions (¢, a;,7;, ¢;j41) from D
Sety, — 4 T for terminal ¢, 1
LY = r; +ymaxy Q(¢jy1.a’;0) for non-terminal ¢;

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3
end for
end for
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DQN In Practice

» Train in the Pong game environment using already
implemented DQN code

python -m baselines.run --alg=deepq --env=PongNoFrameskip-v4

With OpenAl Baselines

1 def atari():

2 return dict(

3 network="conv_only",

4 lr=le-4,

5 buffer_size=10000,

6 exploration_fraction=0.1,

7 exploration_final_eps=0.01,

8 train_freg=4,

9 learning_starts=10000,

10 target_network_update_freg=100@,
Set different H gamma=0. 22,

12 prioritized_replay=True,
hyper‘par‘ametel"s 13 prioritized_replay_alpha=e.6,

14 checkpoint_freq=10000,

15 checkpoint_path=None,

16 dueling=True

17 )

14 https://github.com/openai/baselines 3/11/2024



Deep Q-Learning for Partially Observable Problems

» Input: a vector that describes the history
(observation + actions)

» Output: a vector that contains the estimated Q-value
for each valid action

hidden layers

input layer -

h

Conceptually, can be viewed as constructing a new MDP with state defined by the history

15 Fei Fang 3/11/2024



Ranger vs Heuristic Poacher
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DQN Ranger Trained Against Heuristic Poacher
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DQN Defender Trained Against Heuristic Attacker

Attacker '
Snares -

Defender ’
Patrol Post A
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Policy Gradient with a Q-Network

» Recall in PG, we want to update 6 towards the direction

Vo] (0) = Er, [V logme(s,a) Q™0 (s, a)]

» In REINFORCE, we use a sample return to estimate ()
» We can also train a Q-network to approximate (

» Various actor-critic algorithms
“Critic” estimates the value function (e.g., Q value,V value)

“Actor” updates the policy distribution in the direction suggested
by the Ciritic
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Outline

» Deep Reinforcement Learning
Deep Q Learning for Ranger Patrol Planning

» A Spatio-Temporal Reinforcement Learning Algorithm
for Bike Repositioning

20 Fei Fang 3/11/2024



Bike Repositioning Problem

21 https://www.post-gazette.com/news/transportation/2018/12/02/Healthy-Ride-Pittsburgh-bike-sharing-program-adding- 3/11/2024
stations-new-neighborhoods/stories/201812020119
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Bike Repositioning Problem

» Bikesharing is popular and convenient, but you may
fail to rent/return
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22 https://gewash.org/view/38849/empty-bikeshare-stations-dont-always-mean-long-waits 3/11/2024
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https://ggwash.org/view/38849/empty-bikeshare-stations-dont-always-mean-long-waits
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Bike Repositioning Problem

» Imbalanced demand over space and time

Avg Citi Bike trips, hourly

23

NYC Citi Bike Trips Between Manhattan and Outer Boroughs
Based on Citi Bike system data, weekdays 9/2015-11/2015

1504
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— Outer Boroughs to Manhattan

toddwschneider.com

Video: https://toddwschneider.com/posts/a-tale-of-twenty-two-
million-citi-bikes-analyzing-the-nyc-bike-share-system/
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https://toddwschneider.com/posts/a-tale-of-twenty-two-million-citi-bikes-analyzing-the-nyc-bike-share-system/

Bike Repositioning Problem

» Need to reposition them

https://bikeportland.org/2016/09/07/portland-now-using-pedal-powered-trikes-to-
help-rebalance-bike-share-stations-191007

https://farm9.static.flickr.com/8103/85881 17819 _8eaf60bd39_b.jpg
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https://bikeportland.org/2016/09/07/portland-now-using-pedal-powered-trikes-to-help-rebalance-bike-share-stations-191007

Bike Repositioning Problem

» What is optimal repositioning? Various formulations:
Minimize the customer loss in a long period given a fixed
repositioning budget
Reduce repositioning cost while ensuring a level of
customer satisfaction

Maximize profit minus repositioning cost

25 Fei Fang 3/11/2024



Bike Repositioning Problem

» How to achieve optimal repositioning?
» Redistribute the bikes after an unbalance is observed!?
Might be too late

» Predict bike usage for the next time period and
reposition greedily based on that!
Might still be too short-sighted

26 Fei Fang 3/11/2024



Challenges in Bike Repositioning

» Challenge |: Repositioning now can impact the future

Green circle: empty-dock station
5,t1:5 bikes will be rented from s, and
returned to s, at time period t; € Z
Dashed arrow: how a trike repositions
to < t; < t, and move between nodes
takes 1 time step

Poll 1:Assuming no bikes are available at any dock
before t,, how many more customers the platform is

able to serve in total due to the repositioning?
A:5;B:4; C:9; D: None of the above; E: | don’t know

27 Fei Fang 3/11/2024



Challenges in Bike Repositioning

» Challenge 2. It is a complex system

Large-scale: tens of trikes repositioning among hundreds of
stations in a system simultaneously

Dynamic: demand changes over space and time with large
fluctuation

NYC Citi Bike Trips Between Manhattan and Outer Boroughs
Based on Citi Bike system data, weekdays 9/2015-11/2015
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Challenges in Bike Repositioning

» Challenge 3: Uncertainties in practice

29 http://growthspurtcoaching.com/on-what-to-do-when-someone-else-falls-down/ 3/11/2024

https://www.npr.org/sections/parallels/2018/03/07/591 14054 | /a-push-to-modernize-
philippine-transport-threatens-the-beloved-jeepney
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Bike Repositioning as an RL problem The planner is the agent

» Discussion: Formulate the problem as an POMDP

State S (unknown to agent):
Action A:

Observation ():

Observation probabilities O (o|s;) (unknown)
Transition function (unknown) T(s¢, as, S¢41)
R: reward function 1, = the negative customer loss

30 Fei Fang 3/11/2024



Bike Repositioning as an RL problem

» Action (for one trike): where a trike should go to
pick up or unload how many bikes

» Observations
Current bike and dock availability at each region
Predicted rent and return demands in all future periods
Location of all the trikes
What repositioning task the trikes are completing
Current number of bikes on each trike
Expected arrival times of the trikes

31 Fei Fang 3/11/2024



Bike Repositioning as an RL problem

» An RL problem because we do not have explicit
model of T or R

» Can’t afford trial-and-error learning in the real world

» Build a system simulator

Simulate the (1) rent process, (2) return process, (3)
reposition process (with noise)

» Period 1 <« Period 2 ...

time window 1 ‘ time window 2 ‘ ------

rr 1 1 1 |

rent return reposition rent ... ...

32 Fei Fang 3/11/2024



Let’s Start Simple

» Assume we only have a small number of stations
» Assume we only control one trike

» There are other trikes are in the system, but we do
not control them (can be treated as part of the
environment)

» Apply deep Q-Learning to the problem

33 Fei Fang 3/11/2024



Q Network for Bike Repositioning

A vector describing history Q(s,aq)
(previous observations and Neural Network Q(s,ay)
actions)

Q(S' a3)

» Too many actions!

» Instead of having a vector output, build a network
that also takes action as input, and output a value

A vector describing history
(previous observations and
actions)

Neural Network Q(s,a)

A vector describing
current action a

34 Fei Fang 3/11/2024



How to Scale Up?

» Problem is much more challenging with more trikes
under control and more stations

» Learn an optimal inner-cluster reposition policy

Group the stations into clusters

Only consider repositioning within each cluster

Blue: starved
Red: jammed

35 Dynamic Bike Reposition: A Spatio-Temporal Reinforcement Learning Approach 3/11/2024



https://dl.acm.org/doi/10.1145/3219819.3220110

How to Scale Up?

» Multiple agents with the same policy

Each trike is a single agent and treat all other trikes as part
of the environment

All the trikes share the same Q-network

36 Fei Fang 3/11/2024



Representation of Action

» For the trike under our control
(w.l.o.g.,assume it is trike |):a vector
describing where the trike should go

' !
! |
|
to pick up or unload how many bikes iy
NN
o]
Imi
» Convert action to a one-hot vector g
9
and a scalar (n + 1 numbers in total) int
I
' —
il

v
0 110 -9

Target station Load
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Representation of State/History

4 St = (Ot—Li' at_Li, cer ) Ot—ll Ar_1, Ot, t)

Current bike and dock availability
Predicted rent and return demand Status of other trikes

-
| System status Lo TR R R U
: by d b, d, : : P> P33 Ps : : q1 :
1 : as | [36] |22 |25 | : alfo]]of] : o
! | !
2 37 28] |24 |12] ! 0 0 71| s || .
| | : | | | Status of this trike
| | | | | | v, is at region s,
! || ! : with 5 bikes on it
CLs ][] [oe] (8] ) a ] 0 o1 1]of]
niy 20| |36 [24] [ 22 : : of|-s]]o : : 0 :
L o L
T | [
\ \ A \
O, =|44]18 37|35 o1 0 5
Availability Current station # Bikes

Predicted bike availability in the coming period
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Representation of State/History

4 St = (Ot—Li' at_Li, cer ) Ot—ll Ar_1, Ot, t)

¥ ¥ ¥ ¥
O, =| 44|18 3735 011 0 s a,=|o 1lof |-
Availability Current station # Bikes Target station Load
O, =| | | [ a =L_10
At Sgc IE‘C Str btr
S =1 | | | O 10 | | | [
O,-1 a1 O, {
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Build the Q-Network

» Recall
¥ ¥ ¥ ¥
O, =|44]18 37| 35 0] 1 0 5 a,=|o 1|10 -9
Availability Current station # Bikes Target station Load

» Network structure

Optimal long-term value OR [« -
f s @ ¢ Wa
—| Fully connected layers

T T T T T ‘ 1 v Embedding

¥ ¥ ¥ ¥ ¢ Fully
Embedding layer connected
Ty | 2. v lL om
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Evaluation

» Conduct experiments on real-world datasets from Citi
Bike in Apr.- Oct. 2016

» Compare with baselines (No Reposition, Greedy
Reposition, Prediction based Random Reposition,

Optimization-based Reposition)

» Evaluation Metric: total customer loss in long period,
including the ones failed to rent and the ones failed to
return in morning rush hours

Cuﬁg‘;ﬁ“er NR PR GR | PGR | OR | STRL
Cluster | Cy 267 178 200 | 157 | 190 113
C, 286 229 256 | 238 | 237 178
C,+C, | 553 407 456 | 395 | 427 291
4] Fei Fang 3/11/2024



Discussion

» Can you think of any other social good problem or
problems you see in daily life that can be modeled as
an RL problem and can potentially be solved using
Deep Q-learning?

42 Fei Fang 3/11/2024



Other Resources and References

» Dynamic Bike Reposition: A Spatio-Temporal
Reinforcement Learning Approach

» A Dynamic Approach to Rebalancing Bike-Sharing
Systems

» Station Site Optimization in Bike Sharing Systems

» A Tale of Twenty-Two Million Citi Bike Rides:
Analyzing the NYC Bike Share System

» OpenAl Gym: https://gym.openai.com/
» RL Lib: https://docs.ray.io/en/latest/rllib/index.html

43 Fei Fang 3/11/2024
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Bike Repositioning Problem

» Bikesharing is popular and convenient

BIKE SHARE MAP
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Bike Repositioning Problem

» Imbalanced demand over space
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Observation and Action Representation (one step)

b4, d;: current bike and dock
availability; b,, d,: predicted

availability

drop-offs
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Other trikes’
pick-ups and

This trike’s
current load

A) Observation generation
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B) Action generation
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Value Network Architecture

» Optimal long-term value network

Optimal long-term value [«— OR [«

i

— > Fully connected layers
r 1 11 1+t
4 4 4 v
Embedding layer
2 y v L2
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Poll 2

» Let L; = 1.Let n; be the number of regions. How many
numbers are needed to represent a state with this

representation s; = (Ot_Ll., Ap_p) e O¢_1,a:-1, 0y, t)?

49
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