

- HW4 due 3/21
- Course project progress report 2 due 3/26
- PRA5 due 3/28
- Come to OH for course project discussion!

Artificial Intelligence Methods for Social Good Lecture 18: Basics of Game Theory

17-537 (9-unit) and 17-737 (12-unit) Fei Fang <u>feifang@cmu.edu</u>

Learning Objectives

- Understand the concept of
 - Game, Player, Action, Strategy, Payoff, Expected utility, Best response
 - Maxmin Strategy, Minmax Strategy
 - Nash Equilibrium
- Write down the linear program for finding maxmin/minmax strategy
- Describe Minimax Theory
- For the ferry protection problem, briefly describe
 - Significance/Motivation
 - Task being tackled, i.e., what is being solved/optimized
 - Model and method used to solve the problem
 - Evaluation process and criteria

From Games to Game Theory

- The study of mathematical models of conflict and cooperation between intelligent decision makers
- Used in economics, political science etc

John von Neumann

John Nash

Heinrich Freiherr von Stackelberg

Winners of Nobel Memorial Prize in Economic Sciences

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

Some Classical Games

Rock-Paper-Scissors (RPS)

- Rock beats Scissors
- Scissors beats Paper
- Paper beats Rock
- Prisoner's Dilemma (PD)
 - If both Cooperate: I year in jail each
 - If one Defect, one Cooperate: 0 year for (D), 3 years for (C)
 - If both Defect: 2 years in jail each

Some Classical Games

- Football vs Concert (FvsC)
 - Historically known as Battle of Sexes
 - ▶ If football together:Alex ☺☺, Berry ☺
 - ▶ If concert together:Alex ⓒ, Berry ⓒⓒ
 - ▶ If not together: Alex ☺, Berry ☺
- Tic-Tac-Toe (TTT)

Normal-Form Games

- A finite, n-player normal-form game is described by a tuple (N, A, u)
 - Set of players $N = \{1..n\}$
 - Set of joint actions $A = \prod_i A_i$
 - $\mathbf{a} = (a_1, \dots, a_n) \in A$ is an action profile
 - ▶ Payoffs / Utility functions $u_i: A \to \mathbb{R}$
 - $u_i(a_1, \dots, a_n)$ or $u_i(\mathbf{a})$
- Players move simultaneously and then game ends immediately
- Zero-Sum Game: $\sum_i u_i(\mathbf{a}) = 0, \forall \mathbf{a}$

May also be called matrix form,

strategic form, or standard form

Payoff Matrix

- A two-player normal-form game with finite actions can be represented by a (bi)matrix
 - Player I: Row player, Player 2: Column player
 - First number is the utility for Player I, second for Player 2

			Player 2	
		Rock	Paper	Scissors
Player I	Rock	0,0	-1,1	١,-١
	Paper	۱,-۱	0,0	-1,1
	Scissor	-1,1	۱,-۱	0,0

		Cooperate	Defect		
/er	Cooperate	-1,-1	-3,0		
Player	Defect	0,-3	-2,-2		
	Berry				
		Football	Concert		

2.1

0.0

Football

Concert

Alex

Playor 2

	-				_			
Q:What	if we	have	more	than	2	play	vers?	

0.0

1,2

Pure Strategy, Mixed Strategy, Support

- Pure strategy: choose an action deterministically
- Mixed strategy: choose action randomly
- Given action set A_i , player *i*'s strategy set is $S_i = \Delta^{|A_i|}$
- Support: set of actions chosen with non-zero probability

Expected Utility

- Given players' strategy profile s = (s₁, ..., s_n), what is the expected utility for each player?
- Let s_i(a) be the probability of choosing action a ∈ A_i, then
 - $u_i(s_1, \dots, s_n) =$

Expected Utility

- Given players' strategy profile s = (s₁, ..., s_n), what is the expected utility for each player?
- Let s_i(a) be the probability of choosing action a ∈ A_i, then
 - $u_i(s_1, \dots, s_n) = \sum_{\mathbf{a} \in A} P(\mathbf{a}) u_i(\mathbf{a}) = \sum_{\mathbf{a} \in A} u_i(\mathbf{a}) \prod_{i'} s_{i'}(a_{i'})$

Best Response

- Let $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots a_n)$.
- An action profile can be denoted as $\mathbf{a} = (a_i, a_{-i})$
- Similarly, define u_{-i} and s_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

•
$$a_i^* \in BR(a_{-i})$$
 iff

•
$$s_i^* \in BR(s_{-i})$$
 iff

- Theorem (Nash 1951): A mixed strategy is BR iff all actions in the support are BR
 - ▶ $s_i \in BR(s_{-i})$ iff

Best Response

• Let
$$a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots a_n).$$

- An action profile can be denoted as $\mathbf{a} = (a_i, a_{-i})$
- Similarly, define u_{-i} and s_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

▶
$$a_i^* \in BR(a_{-i})$$
 iff $\forall a_i \in A_i, u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$

▶
$$s_i^* \in BR(s_{-i})$$
 iff $\forall s_i \in S_i, u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$

- Theorem (Nash 1951): A mixed strategy is BR iff all actions in the support are BR
 - $s_i \in BR(s_{-i}) \text{ iff } \forall a_i: s_i(a_i) > 0, a_i \in BR(s_{-i})$

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

15

Nash Equilibrium

- Nash Equilibrium (NE)
 - ▶ $\mathbf{s} = \langle s_1, ..., s_n \rangle$ is NE if $\forall i, s_i \in BR(s_{-i})$
 - Everyone's strategy is a BR to others' strategy profile
 - Focus on strategy profile for all players
 - One cannot gain by unilateral deviation
 - Pure Strategy Nash Equilibrium (PSNE)
 - $\mathbf{a} = \langle a_1, \dots, a_n \rangle$ is PSNE if $\forall i, a_i \in BR(a_{-i})$
 - Mixed Strategy NE: at least one player use a mixed strategy

Player 2				
	Cooperate	Defect		
Cooperate	-1,-1	-3,0		
Defect	0,-3	-2,-2		
	•	Cooperate Cooperate -1,-1		

QI:What are the PSNEs in this game?

Q2: Given a mixed strategy, how to determine whether it is an NE?

Q3: Is $\left(\frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{1}{2}, \frac{1}{2}\right)$ an NE for this game?

Poll I

Is the following strategy profile an NE? Alex: (2/3,1/3), Berry: (1/3,2/3)

A:Yes B: No C: I don't know

Poll I

Is the following strategy profile an NE? Alex: (2/3,1/3), Berry: (1/3,2/3)

$$u_{A}(s_{A}, s_{B}) = \frac{2}{3} * \frac{1}{3} * 2 + \frac{1}{3} * \frac{2}{3} * 1 = 2/3$$
$$u_{A}(F, s_{B}) = 2 * \frac{1}{3} = \frac{2}{3}$$
$$u_{A}(C, s_{B}) = 1 * \frac{2}{3} = \frac{2}{3}$$
So $u_{A}(s'_{A}, s_{B}) = \epsilon u_{A}(F, s_{B}) + (1 - \epsilon)u_{A}(C, s_{B}) = 2/3$ So Alex has no incentive to deviate (u_{A} cannot increase)
Similar reasoning goes for u_{B}

		Berry			
		Football	Concert		
Alex	Football	2,1	0,0		
	Concert	0,0	١,2		

Nash Equilibrium

- Theorem (Nash 1951): NE always exists in finite games
 - Finite game: $n < \infty$, $|A| < \infty$
 - NE: pure or mixed

Compute Nash Equilibrium

- Find all Nash Equilibrium (two-player)
 - Support Enumeration Method
 - Lemke-Howson Algorithm
 - Linear Complementarity Programming (LCP) formulation
 - Solve by pivoting on support (similar to Simplex algorithm)
 - In practice, available solvers/packages: Nashpy (python), <u>gambit project</u> With Nashpy 0.0.19

		Berry				
		Football	Concert			
Alex	Football	2,1	0,0			
	Concert	0,0	١,2			

Maximin Strategy

- Maximin Strategy (applicable to multiplayer games)
 - Maximize worst case expected utility
 - Maximin strategy for player *i* is $\underset{s_i}{\operatorname{argmax}} \min_{s_{-i}} u_i(s_i, s_{-i})$
 - Maximin value for player *i* is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ (Also called safety level)
 - Focus on single player's strategy
 - Can be computed through linear programming

- For bimatrix games, maximin strategy can be computed through linear programming
- Let U¹_{ij} be player I's payoff value when player I choose action i and player 2 choose action j

Denote $s_1 = \langle x_1, ..., x_{|A_1|} \rangle$ where x_i is the probability of choosing the i^{th} action of player I

- For bimatrix games, maximin strategy can be computed through linear programming
- Let U¹_{ij} be player I's payoff value when player I choose action i and player 2 choose action j

To get $\underset{s_1}{\operatorname{argmax}} \min_{s_2} u_1(s_1, s_2)$, we denote $s_1 = \langle x_1, \dots, x_{|A_1|} \rangle$ where x_i is the probability of choosing the i^{th} action of player 1. Now we need to find the value of x_i

$$\max_{\substack{x_1, \dots, x_{|A_1|} \\ \text{s.t. } \sum_i x_i = 1 \\ x_i \ge 0}} \min_{i} \sum_{i} x_i U_{ij}^1$$

Only need to check pure strategies. Recall the theorem of BR:A mixed strategy is BR iff all actions in the support are BR

Convert to LP

• Claim: x^* is optimal solution for \mathcal{P}_1 iff it is optimal solution for \mathcal{P}_2

3/20/2024

Þ

3/20/2024

Minimax Strategy

- Minimax Strategy in two-player games:
 - Minimize best case expected utility for the other player (just want to harm your opponent)
 - Minimax strategy for player *i* against player -i is argmin max $u_{-i}(s_i, s_{-i})$ s_i s_{-i}
 - Minimax value for player -i is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$
 - Focus on single player's strategy
 - Can be computed through linear programming

Compute Minimax Strategy

- Minimax strategy can be found through LP
- Let U²_{ij} be player 2's payoff value when player 1 choose action i and player 2 choose action j
- Let s₁ = (x₁, ..., x_{|A₁|}) where x_i is the probability of choosing the ith action of player I

$$\min_{\substack{x,v \\ x,v}} v$$

s.t. $v \ge \sum_{i} x_{i} U_{ij}^{2}, \forall j$
$$\sum_{i} x_{i} = 1$$
$$x_{i} \ge 0$$

Compute Minimax Strategy

Compute Minimax Strategy

Fei Fang

Minimax Theorem

- Theorem (von Neumann 1928, Nash 1951):
 - Informal: Minimax value=Maximin value=NE value in finite 2player zero-sum games
 - Formally
 - $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
 - ▶ $\exists v \in \mathbb{R}$ such that Player I can guarantee value at least v and Player 2 can guarantee loss at most v (v is called value of the game)
 - Indication: All NEs leads to the same utility profile in a finite two-player zero-sum game

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

Protect Ferry Line

Problem

Optimize the use of patrol resources

- Moving targets: Fixed schedule
- Potential attacks: Any time
- Continuous time

Model

35

Attacker: Which target, when to attack

- Defender: Choose a route for patrol boat
- > Payoff value for attacker: $u_i(t)$ if not protected, 0 if protected
- Minimax: Minimize attacker's expected utility assume attacker best responds

Attacker's Expected Utility = Target Utility \times Probability of Success

		AttEU(i,t)		u _i (t) Adversary	$(1 - \sum_{r \ protects \ t} p_r)$
	p _r		l 0:00:00 AM Target I	10:00:01 AM Target 1	I 0:30:00 AM Target 3
der	30%	Purple Route	-5, <mark>5</mark>	-4, 4	0, <mark>0</mark>
efend	40%	Orange Route			
Dei	20%	Blue Route			
	V	••••			2/20/2024

Find Minmax Strategy

Challenge: Infinite routes and time points in theory!

HOW TO FIND OPTIMAL DEFENDER STRATEGY

Step I: Compact representation for defender

Adversary

	10:00:00 AM Target 1	10:00:01 AM Target 1	•••	10:30:00 AM Target 3	•••
Purple Route Orange Route Blue Route	-5, <mark>5</mark>	-4, 4		0, 0	
•••••					

Defender

- Full representation: Focus on routes (N^T)
 - Prob(Orange Route) = 0.37
 - Prob(Blue Route) = 0.17

- Prob(Green Route) = 0.33
- Prob(Purple Route) = 0.13

- Full representation: Focus on routes (N^T)
 - Prob(Orange Route) = 0.37
 - Prob(Blue Route) = 0.17
- Linear program

- Prob(Green Route) = 0.33
- Prob(Purple Route) = 0.13

Compact representation: Focus on edges (N²T)

Probability flow over each edge

- Theorem I: Let p, p' be two defender strategies in full representation, and the compact representation for both strategies is f, then AttEU_p(i,t) = AttEU_p,(i,t) DefEU_p(i,t) = DefEU_p,(i,t), ∀i,t
- Compact representation does not lead to any loss

Poll 2

- How many variables are needed to compute the optimal defender strategy in compact representation?
 - A: $O(N^2T)$
 - $\bullet \mathsf{B}: \mathsf{O}(N^T)$
 - $C: O(NT^2)$
 - ▶ D: O(NT)
 - E: None of the above
 - F: I don't know

HOW TO FIND OPTIMAL DEFENDER STRATEGY

Step I: Compact representation for defender

Step II: Compact representation for attacker

		Adversary			
	10:00:00 AM Target 1	10:00:01 AM Target 1	•••	10:30:00 AM Target 3	•••
Purple Route	-5, <mark>5</mark>	-4, 4		0, 0	
Orange Route					
Blue Route					

Defender

Partition attacker action set

46

Only need to reason about a few attacker actions

• Partition points θ^k : When protection status changes

• Partition points θ^k : When protection status changes

- AttEU = Target Utility(t) × Probability of Success
- One best time point in each zone

Fixed

- <u>Theorem 2</u>: Given target utility function $u_i(t)$, assume the defender's pure strategy is restricted to be a mapping from $\{\hat{t}\}$ to $\{\hat{d}\}$, then in the attacker's best response, attacking time $t^* \in \{t^*\} =$ $\{t|\exists i, j \text{ such that } t = \arg \max_{\substack{t' \in [\theta_j, \theta_{j+1}]}} u_i(t')\}$
- Only considering the best time points does not lead to any loss when attacker best responds

•
$$\infty \rightarrow O(N^2T)$$

HOW TO FIND OPTIMAL DEFENDER STRATEGY

- Step I: Compact representation for defender
- Step II: Compact representation for attacker
- Step III: Consider infinite defender action set
- Step IV: Equilibrium refinement

EVALUATION: SIMULATION RESULTS

- Randomly chosen utility function
- Attacker's expected utility (lower is better)

EVALUATION: FEEDBACK FROM REAL-WORLD

US Coast Guard evaluation

- Point defense to zone defense
- Increased randomness
- Mock attacker
- Patrollers feedback
 - More dynamic (speed change, U-turn)
- Professional mariners' observation
 - Apparent increase in Coast Guard patrols
- Used by USCG (without being forced)

PUBLIC FEEDBACK

Posted September 8, 2013 by

shortysmom

By shortysmom | Posted September 8, 2013 | Staten Island, New York

EXTEND TO 2-D NETWORK

- Complex ferry system: Seattle, San Francisco
- Calculate partition points in 3D space

Additional Resources and References

Additional Resources and References

- Algorithmic Game Theory 1st Edition, Chapters 1-3
 Noam Nisan (Editor), Tim Roughgarden (Editor), Eva Tardos (Editor), Vijay V.Vazirani (Editor)
 - http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmicgame-theory.pdf
- Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Chp 3,4
- Online course
 - https://www.youtube.com/user/gametheoryonline
- Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources

Backup Slides

Minimax Strategy

- Minimax Strategy in n-player games:
 - Coordinate with other players to minimize best case expected utility for a particular player (just want to harm that player)
 - Minimax strategy for player i against player j is i's component of s_{-j} in argmin max u_j(s_j, s_{-j})
 - Minimax value for player j is min max $u_j(s_j, s_{-j})$
 - Focus on single player's strategy
 - Can be computed through linear programming (treating all players other than j as a meta-player)

- Recall: A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
 - If we know in a NE, for player *i*, action 1, 2, and 3 are in the support of s_i, action 4, 5 are not what does it mean?
 (I)
 - ► (2)
 - ► (3)
 - (4)

- Recall: A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
 - If we know in a NE, for player *i*, action 1, 2, and 3 are in the support of s_i, action 4, 5 are not what does it mean?
 - (I) Action 1, 2, and 3 are chosen with non-zero probability, action 4,5 are chosen with zero probability
 - (2) The probability of choosing action 1, 2, 3 sum up to 1
 - (3) Action 1, 2, and 3 lead to the exactly same expected utility
 - (4) The expected utility of taking action 1, 2, and 3 is not lower than action 4, 5

- If support for both Alex and Berry is (F, C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_A = (x_1, x_2)$ and Berry's strategy is $s_B = (y_1, y_2)$ then similar to (1)-(4) in the previous slide, we know

		Football	Concert
ex	Football	2,1	0,0
A	Concert	0,0	١,2

- If support for both Alex and Berry is (F, C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_A = (x_1, x_2)$ and Berry's strategy is $s_B = (y_1, y_2)$ then similar to (1)-(4) in the previous slide, we know

$$\begin{array}{l} (1): x_1 > 0, x_2 > 0, y_1 > 0, y_2 > 0 \\ (2): x_1 + x_2 = 1, y_1 + y_2 = 1 \\ (3): u_A(F, s_B) = u_A(C, s_B), u_B(s_A, F) = u_B(s_A, C) \\ u_A(F, s_B) = 2 \times y_1 + 0 \times y_2 \qquad u_B(s_A, F) = 1 \times x_1 + 0 \times x_2 \\ u_A(C, s_B) = 0 \times y_1 + 1 \times y_2 \qquad u_B(s_A, C) = 0 \times x_1 + 2 \times x_2 \\ \text{So } 2y_1 = y_2 \qquad \qquad \text{So } x_1 = 2x_2 \end{array}$$

		Football	Concert
Alex	Football	2,1	0,0
A	Concert	0,0	١,2

Solve the equations in (2)(3) and get $s_A = \left(\frac{2}{3}, \frac{1}{3}\right)$, $s_B = \left(\frac{1}{3}, \frac{2}{3}\right)$ which satisfy (1). It is indeed a NE with specified support.

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min_{i} |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP

An NE is found if the LP has a feasible solution

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min_{i} |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP

$$\max_{x,y,v} 1$$

$$x_i \ge 0, \forall i; y_j \ge 0, \forall j$$

$$x_i = 0, \forall i \notin J_1; y_j = 0, \forall j \notin J_2$$

$$\sum_{i \in J_1} x_i = 1$$

$$\sum_{j \in J_2} y_j u_1(i,j) = v_1, \forall i \in J_1$$

$$\sum_{i \in J_1} x_i u_2(i,j) = v_2, \forall j \in J_2$$

$$\sum_{j \in J_2} y_j u_1(i,j) \le v_1, \forall i \notin J_1$$

$$\sum_{i \in J_1} x_i u_2(i,j) \le v_2, \forall j \notin J_2$$

An NE is found if the LP has a feasible solution

- Support Enumeration Method (for bimatrix games)
 - Enumerate all support pairs with the same size for size=1 to $\min |A_i|$
 - For each possible support pair J_1 , J_2 , build and solve a LP
 - Variables: $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n, v_1, v_2$
 - Objective: a dummy one max 1
 - Constraints (1b,1c): Probabilities are nonnegative, probability of actions not in the support is zero

 $\Box \ x_i \ge 0, \forall i; y_j \ge 0, \forall j; x_i = 0, \forall i \notin J_1; y_j = 0, \forall j \notin J_2$

- Constraints (2): Probability of taking actions in the support sum up to I
 □ ∑_{i∈J1} x_i = 1; ∑_{j∈J2} y_j = 1
- Constraints (3): Expected utility (EU) of choosing any action is the support is the same when fixing the other player's strategy

 $\Box \quad \sum_{j \in J_2} y_j u_1(i,j) = v_1, \forall i \in J_1; \sum_{i \in J_1} x_i u_2(i,j) = v_2, \forall j \in J_2$

- Constraints (4): Actions not in support does not lead to higher expected utility $\sum_{j \in J_2} y_j u_1(i,j) \le v_1, \forall i \notin J_1; \sum_{i \in J_1} x_i u_2(i,j) \le v_2, \forall j \notin J_2$
- An NE is found if the LP has a feasible solution

Compute Nash Equilibrium

- Find all Nash Equilibrium (two-player)
 - Support Enumeration Method
 - Lemke-Howson Algorithm
 - Linear Complementarity (LCP) formulation (another special class of optimization problem)
 - Solve by pivoting on support (similar to Simplex algorithm)
 - In practice, available solvers/packages: nashpy (python), gambit project (<u>http://www.gambit-project.org/</u>)