Reminder

- HW4 due 3/2I
- Course project progress report 2 due 3/26
- PRA5 due 3/28
- Come to OH for course project discussion!

Artificial Intelligence Methods for Social Good

Lecture 18 :

Basics of Game Theory

17-537 (9-unit) and I7-737 (12-unit)
Fei Fang
feifang@cmu.edu

Learning Objectives

- Understand the concept of
- Game, Player, Action, Strategy, Payoff, Expected utility, Best response
- Maxmin Strategy, Minmax Strategy
, Nash Equilibrium
- Write down the linear program for finding maxmin/minmax strategy
- Describe Minimax Theory
- For the ferry protection problem, briefly describe
- Significance/Motivation
, Task being tackled, i.e., what is being solved/optimized
- Model and method used to solve the problem
- Evaluation process and criteria

From Games to Game Theory

- The study of mathematical models of conflict and cooperation between intelligent decision makers
- Used in economics, political science etc

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

Some Classical Games

- Rock-Paper-Scissors (RPS)
- Rock beats Scissors
- Scissors beats Paper
- Paper beats Rock
- Prisoner's Dilemma (PD)
b If both Cooperate: I year in jail each
- If one Defect, one Cooperate: 0 year for (D), 3 years for (C)
- If both Defect: 2 years in jail each

Some Classical Games

- Football vs Concert (FvsC)
- Historically known as Battle of Sexes
- If football together:Alex $) \cdot(\cdot$, Berry $)$

- If not together:Alex $*$, Berry $*$
- Tic-Tac-Toe (TTT)

Normal-Form Games

- A finite, n-player normal-form game is described by a tuple (N, A, u)
- Set of players $N=\{1 . . n\}$

May also be called matrix form, strategic form, or standard form

- Set of joint actions $A=\prod_{i} A_{i}$
$\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in A$ is an action profile
- Payoffs / Utility functions $u_{i}: A \rightarrow \mathbb{R}$
> $u_{i}\left(a_{1}, \ldots, a_{n}\right)$ or $u_{i}(\mathbf{a})$
- Players move simultaneously and then game ends immediately
- Zero-Sum Game: $\sum_{i} u_{i}(\mathbf{a})=0, \forall \mathbf{a}$

Payoff Matrix

- A two-player normal-form game with finite actions can be represented by a (bi)matrix
Player I:Row player, Player 2: Column player
- First number is the utility for Player I, second for Player 2

$\begin{aligned} & \bar{\vdots} \\ & \frac{\grave{㐅}}{\mathbf{\omega}} \end{aligned}$		Player 2		
		Rock	Paper	Scissors
	Rock	0,0	-I,I	I,-I
	Paper	I,-I	0,0	-1,1
	Scissor	$-1,1$	I,-I	0,0

Player 2			
		Cooperate	Defect
$\overline{\grave{\omega}}$	Cooperate	$-1,-1$	$-3,0$
$\stackrel{\text { ढ }}{\sim}$	Defect	$0,-3$	$-2,-2$

Berry			
Football Concert $\stackrel{\text { Football }}{\ll}$ 2,1 0,0 Concert 0,0 1,2			

Q:What if we have more than 2 players?

Pure Strategy, Mixed Strategy, Support

- Pure strategy: choose an action deterministically
- Mixed strategy: choose action randomly
- Given action set A_{i}, player i 's strategy set is $S_{i}=\Delta^{\left|A_{i}\right|}$
- Support: set of actions chosen with non-zero probability

Expected Utility

- Given players' strategy profile $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$, what is the expected utility for each player?
- Let $s_{i}(a)$ be the probability of choosing action $a \in$ A_{i}, then
- $u_{i}\left(s_{1}, \ldots, s_{n}\right)=$

Expected Utility

- Given players' strategy profile $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$, what is the expected utility for each player?
- Let $s_{i}(a)$ be the probability of choosing action $a \in$ A_{i}, then
- $u_{i}\left(s_{1}, \ldots, s_{n}\right)=\sum_{\mathbf{a} \in \mathrm{A}} P(\mathbf{a}) u_{i}(\mathbf{a})=\sum_{\mathbf{a} \in \mathbf{A}} u_{i}(\mathbf{a}) \prod_{i^{\prime}} s_{i^{\prime}}\left(a_{i^{\prime}}\right)$

Best Response

- Let $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots a_{n}\right)$.
- An action profile can be denoted as $\mathbf{a}=\left(a_{i}, a_{-i}\right)$
- Similarly, define u_{-i} and s_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

```
v a}\mp@subsup{a}{i}{*}\inBR(\mp@subsup{a}{-i}{})\mathrm{ iff
v s}\mp@subsup{s}{i}{*}\inBR(\mp@subsup{s}{-i}{})\mathrm{ iff
```

- Theorem (Nash I95I):A mixed strategy is BR iff all actions in the support are BR
b $s_{i} \in B R\left(s_{-i}\right)$ iff

Best Response

- Let $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots a_{n}\right)$.
- An action profile can be denoted as $\mathbf{a}=\left(a_{i}, a_{-i}\right)$
- Similarly, define u_{-i} and S_{-i}
- Best Response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players

$$
\begin{aligned}
& a_{i}^{*} \in B R\left(a_{-i}\right) \text { iff } \forall a_{i} \in A_{i}, u_{i}\left(a_{i}^{*}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right) \\
& s_{i}^{*} \in B R\left(s_{-i}\right) \text { iff } \forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)
\end{aligned}
$$

- Theorem (Nash 1951):A mixed strategy is BR iff all actions in the support are BR
b $s_{i} \in B R\left(s_{-i}\right)$ iff $\forall a_{i}: s_{i}\left(a_{i}\right)>0, a_{i} \in B R\left(s_{-i}\right)$

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

Nash Equilibrium

- Nash Equilibrium (NE)
> $\mathbf{s}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is NE if $\forall i, s_{i} \in B R\left(s_{-i}\right)$
- Everyone's strategy is a BR to others' strategy profile
- Focus on strategy profile for all players
- One cannot gain by unilateral deviation
- Pure Strategy Nash Equilibrium (PSNE)
> $\mathbf{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is PSNE if $\forall i, a_{i} \in B R\left(a_{-i}\right)$
- Mixed Strategy NE: at least one player use a mixed strategy

QI:What are the PSNEs in this game?
Q2: Given a mixed strategy, how to determine whether it is an NE?
Q3: Is $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)$ an NE for this game?

Is the following strategy profile an NE?
Alex: $(2 / 3, I / 3)$, Berry: $(1 / 3,2 / 3)$

A:Yes
B: No
C: I don't know

Berry			
Football $\stackrel{\otimes}{\gtrless}$ Football 2,1 0,0 Concert 0,0 1,2			

Is the following strategy profile an NE?

Alex: ($2 / 3,1 / 3$), Berry: ($1 / 3,2 / 3$)

$$
\begin{gathered}
u_{A}\left(s_{A}, s_{B}\right)=\frac{2}{3} * \frac{1}{3} * 2+\frac{1}{3} * \frac{2}{3} * 1=2 / 3 \\
u_{A}\left(F, s_{B}\right)=2 * \frac{1}{3}=\frac{2}{3} \\
u_{A}\left(C, s_{B}\right)=1 * \frac{2}{3}=\frac{2}{3}
\end{gathered}
$$

So $u_{A}\left(s_{A}^{\prime}, s_{B}\right)=\epsilon u_{A}\left(F, s_{B}\right)+(1-\epsilon) u_{A}\left(C, s_{B}\right)=2 / 3$ So Alex has no incentive to deviate (u_{A} cannot increase) Similar reasoning goes for u_{B}

Berry			
Football $\stackrel{\otimes}{\gtrless}$ Football Concert Concert 0,0 0,0			

Nash Equilibrium

- Theorem (Nash 195I): NE always exists in finite games

Finite game: $n<\infty,|A|<\infty$

- NE: pure or mixed

Compute Nash Equilibrium

- Find all Nash Equilibrium (two-player)
- Support Enumeration Method
- Lemke-Howson Algorithm
- Linear Complementarity Programming (LCP) formulation
- Solve by pivoting on support (similar to Simplex algorithm)
- In practice, available solvers/packages: Nashpy (python), gambit project

With Nashpy 0.0.19


```
import nashpy
import numpy as np
A = np.array([[2, 0], [0, 1]])
B = np.array([[1, 0], [0, 2]])
fvsc = nashpy.Game(A, B)
eqs = fvsc.support_enumeration()
print(*eqs)
```


Maximin Strategy

- Maximin Strategy (applicable to multiplayer games)
- Maximize worst case expected utility
- Maximin strategy for player i is $\underset{s_{i}}{\operatorname{argmax}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)$
- Maximin value for player i is $\max \min u_{i}\left(s_{i}, s_{-i}\right)$ (Also called safety level)
$s_{i} \quad s_{-i}$
- Focus on single player's strategy
- Can be computed through linear programming

Compute Maximin Strategy

- For bimatrix games, maximin strategy can be computed through linear programming
- Let $U_{i j}^{1}$ be player I's payoff value when player I choose action i and player 2 choose action j

Denote $s_{1}=\left\langle x_{1}, \ldots, x_{\left|A_{1}\right|}\right\rangle$ where x_{i} is the probability of choosing the $i^{\text {th }}$ action of player I

Compute Maximin Strategy

- For bimatrix games, maximin strategy can be computed through linear programming
- Let $U_{i j}^{1}$ be player I's payoff value when player I choose action i and player 2 choose action j

To get $\underset{s_{1}}{\operatorname{argmax}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$, we denote $s_{1}=\left\langle x_{1}, \ldots, x_{\left|A_{1}\right|}\right\rangle$ where
x_{i} is the probability of choosing the $i^{\text {th }}$ action of player I. Now we need to find the value of x_{i}

$$
\begin{array}{ll}
\max _{x_{1}, \ldots, x_{\left|A_{1}\right|}} \min _{j} \sum_{i} x_{i} U_{i j}^{1} & \begin{array}{l}
\text { Only need to check pure strategies. } \\
\text { Recall the theorem of BR:A mixed }
\end{array} \\
\text { s.t. } \sum_{i} x_{i}=1 & \begin{array}{l}
\text { strategy is } \mathrm{BR} \text { iff all actions in the }
\end{array} \\
x_{i} \geq 0 & \text { support are } \mathrm{BR}
\end{array}
$$

Compute Maximin Strategy

- Convert to LP

$$
\begin{array}{cc}
\mathcal{P}_{1} & \mathcal{P}_{2}--\mathrm{LP} \\
\max _{x} \min _{j} \sum_{i} x_{i} U_{i j}^{1} \\
\text { s.t. } \sum_{i} x_{i}=1 \\
x_{i} \geq 0
\end{array} \quad \begin{gathered}
\max _{x, v} v \\
\\
\text { s.t. } v \leq \sum_{i} x_{i} U_{i j}^{1}, \forall j \\
\sum_{i} x_{i}=1 \\
x_{i} \geq 0
\end{gathered}
$$

- Claim: x^{*} is optimal solution for \mathcal{P}_{1} iff it is optimal solution for \mathcal{P}_{2}

Compute Maximin Strategy

$$
\begin{gathered}
\max _{x, v} v \\
\text { s.t. } v \leq \sum_{i} x_{i} U_{i j}^{1}, \forall j \\
\sum_{i} x_{i}=1 \\
x_{i} \geq 0
\end{gathered}
$$

Berry			
	Football	Concert	
$\stackrel{\odot}{\varangle}$	Football	2,1	
0,0			
	Concert	0,0	
1,2			

Compute Maximin Strategy

s.t. $v \leq \sum_{i}^{x, v} x_{i} U_{i j}^{1}, \forall j$
$\sum_{i} x_{i}=1$
$x_{i} \geq 0$

$$
\begin{array}{cc}
\max _{x_{F}, x_{C}, v} v x_{C} * 0 & \max _{x_{F}, v} \\
\text { s.t. } v \leq x_{F} * 2+x_{C} * 1 & \text { s.t. } v \leq 2 x_{F} \\
v \leq x_{F} * 0+x_{C} * 1 & v \leq 1-x_{F} \\
x_{F}+x_{C}=1 & 0 \leq x_{F} \leq 1 \\
x_{F} \geq 0, x_{C} \geq 0 &
\end{array}
$$

Berry			
	Football	Concert	
$\stackrel{\odot}{\varangle}$	Football	2,1	
0,0			
	Concert	0,0	
1,2			

Minimax Strategy

- Minimax Strategy in two-player games:
- Minimize best case expected utility for the other player (just want to harm your opponent)
- Minimax strategy for player i against player $-i$ is $\operatorname{argmin} \max u_{-i}\left(s_{i}, s_{-i}\right)$
$s_{i} \quad S_{-i}$
- Minimax value for player $-i$ is $\min \max u_{-i}\left(s_{i}, s_{-i}\right)$ $S_{i} \quad S_{-i}$
- Focus on single player's strategy
- Can be computed through linear programming

Compute Minimax Strategy

- Minimax strategy can be found through LP
- Let $U_{i j}^{2}$ be player 2's payoff value when player I choose action i and player 2 choose action j
- Let $s_{1}=\left\langle x_{1}, \ldots, x_{\left|A_{1}\right|}\right\rangle$ where x_{i} is the probability of choosing the $i^{\text {th }}$ action of player I

$$
\begin{gathered}
\min _{x, v} v \\
\text { s.t. } v \geq \sum_{i} x_{i} U_{i j}^{2}, \forall j \\
\sum_{i} x_{i}=1 \\
x_{i} \geq 0
\end{gathered}
$$

Compute Minimax Strategy

Compute Minimax Strategy

Berry			
	Football	Concert	
$\stackrel{\odot}{<}$	Football	2,1	
0,0			
	Concert	0,0	
1,2			

Minimax Theorem

- Theorem (von Neumann 1928, Nash I95I):
- Informal: Minimax value=Maximin value=NE value in finite 2player zero-sum games
- Formally
$>\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=\min _{s_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)$
- $\exists v \in \mathbb{R}$ such that Player I can guarantee value at least v and Player 2 can guarantee loss at most v (v is called value of the game)
- Indication:All NEs leads to the same utility profile in a finite two-player zero-sum game

Outline

- Normal-Form Games
- Solution Concepts
- Ferry Protection

Protect Ferry Line

Problem

- Optimize the use of patrol resources
- Moving targets: Fixed schedule
- Potential attacks: Any time
- Continuous time

Model

- Attacker:Which target, when to attack
- Defender: Choose a route for patrol boat
- Payoff value for attacker: $u_{i}(t)$ if not protected, 0 if protected
- Minimax: Minimize attacker's expected utility assume attacker best responds
Attacker's Expected Utility $=$ Target Utility \times Probability of Success

Find Minmax Strategy

- Linear program

For all target i, time point t

$$
\underset{\substack{v_{r} \\ p_{r} \in[0,1]}}{p_{r} \leq 1}
$$

$\operatorname{AttE} U(i, t)=u_{i}(t) \times\left(1-\sum_{r \text { protects } t} p_{r}\right)$

Challenge: Infinite routes and time points in theory!

HOWTO FIND OPTIMAL DEFENDER STRATEGY

- Step I: Compact representation for defender

	Adversary					
		10:00:00 AM Target I	10:00:01 AM Target I	...	$\begin{gathered} \text { 10:30:00 AM } \\ \text { Target } 3 \\ \hline \end{gathered}$...
¢	Purple Route	-5, 5	-4, 4		0, 0	
E	Orange Route					
0	Blue Route					
	\ldots					
- 37						/2024

STEP I: COMPACT REPRESENTATION FOR DEFENDER

STEP I: COMPACT REPRESENTATION FOR DEFENDER

- Full representation: Focus on routes $\left(N^{T}\right)$
- $\operatorname{Prob}($ Orange Route) $=0.37$
- $\operatorname{Prob}($ Blue Route $)=0.17$
$\operatorname{Prob}($ Green Route $)=0.33$
$\operatorname{Prob}($ Purple Route $)=0.13$

STEP I: COMPACT REPRESENTATION FOR DEFENDER

- Full representation: Focus on routes $\left(N^{T}\right)$
- $\operatorname{Prob}($ Orange Route $)=0.37 \quad \operatorname{Prob}($ Green Route $)=0.33$
- $\operatorname{Prob}($ Blue Route $)=0.17 \quad \operatorname{Prob}($ Purple Route $)=0.13$
- Linear program

Probability of route

For all target i, time point \hat{t}

$$
\begin{gathered}
\sum_{r} p_{r} \leq 1 \\
p_{r} \in[0,1]
\end{gathered}
$$

STEP I: COMPACT REPRESENTATION FOR DEFENDER

- Compact representation: Focus on edges $\left(N^{2} T\right)$
- Probability flow over each edge

STEP I: COMPACT REPRESENTATION FOR DEFENDER

Probability flow over $\min v$

STEP I: COMPACT REPRESENTATION FOR DEFENDER

- Theorem I: Let p, p^{\prime} be two defender strategies in full representation, and the compact representation for both strategies is f, then

$$
\begin{gathered}
\operatorname{AttE} U_{p}(i, t)=\operatorname{AttE} U_{p^{\prime}}(i, t) \\
\operatorname{DefE} E U_{p}(i, t)=\operatorname{DefE} U_{p^{\prime}}(i, t), \forall i, t
\end{gathered}
$$

- Compact representation does not lead to any loss

Poll 2

- How many variables are needed to compute the optimal defender strategy in compact representation?
- A: $0\left(N^{2} T\right)$
b: $\mathrm{O}\left(N^{T}\right)$
- C: $\mathrm{O}\left(N T^{2}\right)$
, D: O(NT)
, E : None of the above
, F:I don't know

HOWTO FIND OPTIMAL DEFENDER STRATEGY

- Step I: Compact representation for defender
- Step II: Compact representation for attacker

Adversary

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- Partition attacker action set
- Only need to reason about a few attacker actions

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- Partition points θ^{k} : When protection status changes

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- Partition points θ^{k} : When protection status changes

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- AttEU $=$ Target Utility(t$) \times$ Probability of Success
- One best time point in each zone Fixed

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- AttEU $=$ Target Utility(t$) \times$ Probability of Success
- One best time point in each zone

Fixed

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- AttEU $=$ Target Utility(t$) \times$ Probability of Success
- One best time point in each zone Fixed

STEP II: COMPACT REPRESENTATION FOR ATTACKER

- Theorem 2: Given target utility function $u_{i}(t)$, assume the defender's pure strategy is restricted to be a mapping from $\{\hat{\boldsymbol{t}}\}$ to $\{\widehat{\boldsymbol{d}}\}$, then in the attacker's best response, attacking time $t^{*} \in\left\{\boldsymbol{t}^{*}\right\}=$ $\left\{t \mid \exists i, j\right.$ such that $\left.t=\arg \max _{t^{\prime} \in\left[\theta_{j}, \theta_{j+1}\right]} u_{i}\left(t^{\prime}\right)\right\}$
- Only considering the best time points does not lead to any loss when attacker best responds
- $\infty \rightarrow O\left(N^{2} T\right)$

HOW TO FIND OPTIMAL DEFENDER STRATEGY

- Step I: Compact representation for defender
- Step II: Compact representation for attacker
- Step III: Consider infinite defender action set
- Step IV: Equilibrium refinement

EVALUATION: SIMULATION RESULTS

- Randomly chosen utility function
- Attacker's expected utility (lower is better)

EVALUATION: FEEDBACK FROM REAL-WORLD

- US Coast Guard evaluation
- Point defense to zone defense
- Increased randomness
- Mock attacker
- Patrollers feedback
- More dynamic (speed change, U-turn)
- Professional mariners' observation
- Apparent increase in Coast Guard patrols
- Used by USCG (without being forced)

PUBLIC FEEDBACK

$107 \quad 0 \quad{ }^{66} \quad$ U.S. Coast Guard protects the Staten Island Ferry:I feel safe!

By shortysmom | Posted September 8, 2013 | Staten Island, New York

EXTEND TO 2-D NETWORK

- Complex ferry system: Seattle, San Francisco
- Calculate partition points in 3D space

Additional Resources and References

Additional Resources and References

- Algorithmic Game Theory Ist Edition, Chapters I-3 Noam Nisan (Editor), Tim Roughgarden (Editor), Eva Tardos (Editor), Vijay V.Vazirani (Editor)
- http://www.cs.cmu.edu/~sandholm/cs 15-892FI3/algorithmic-game-theory.pdf
- Multiagent Systems:Algorithmic, Game-Theoretic, and Logical Foundations, Chp 3,4
- Online course
- https://www.youtube.com/user/gametheoryonline
- Optimal Patrol Strategy for Protecting Moving Targets with Multiple Mobile Resources

Backup Slides

Minimax Strategy

- Minimax Strategy in n-player games:
- Coordinate with other players to minimize best case expected utility for a particular player (just want to harm that player)
- Minimax strategy for player i against player j is i 's component of s_{-j} in $\underset{s_{-j}}{\operatorname{argmin}} \max _{s_{j}} u_{j}\left(s_{j}, s_{-j}\right)$
- Minimax value for player j is $\min _{s_{-j}} \max _{s_{j}} u_{j}\left(s_{j}, s_{-j}\right)$
- Focus on single player's strategy
- Can be computed through linear programming (treating all players other than j as a meta-player)

Find All NEs

- Recall:A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
- If we know in a NE, for player i, action 1,2 , and 3 are in the support of s_{i}, action 4,5 are not what does it mean?
- (I)
- (2)
- (3)
- (4)

Find All NEs

- Recall:A mixed strategy is BR iff all actions in the support are BR
- To find all NEs, think from the inverse direction: enumerate support
- If we know in a NE, for player i, action 1,2 , and 3 are in the support of s_{i}, action 4,5 are not what does it mean?
- (I) Action 1, 2, and 3 are chosen with non-zero probability, action 4,5 are chosen with zero probability
- (2) The probability of choosing action $1,2,3$ sum up to I
- (3) Action 1, 2, and 3 lead to the exactly same expected utility
- (4) The expected utility of taking action 1,2 , and 3 is not lower than action 4,5

Find All NEs

- If support for both Alex and Berry is (F,C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_{A}=\left(x_{1}, x_{2}\right)$ and Berry's strategy is $s_{B}=\left(y_{1}, y_{2}\right)$ then similar to (1)-(4) in the previous slide, we know

	Football	Concert
$\stackrel{\text { Football }}{ } \times 2, \mathrm{I}$	0,0	
	Concert	0,0
1,2		

Find All NEs

- If support for both Alex and Berry is (F, C), then action F and C should lead to same expected utility for Alex when fixing Berry's strategy and vice versa
- Assume Alex's strategy is $s_{A}=\left(x_{1}, x_{2}\right)$ and Berry's strategy is $s_{B}=\left(y_{1}, y_{2}\right)$ then similar to (1)-(4) in the previous slide, we know

$$
\begin{aligned}
& \begin{array}{l}
\text { (I): } x_{1}>0, x_{2}>0, y_{1}>0, y_{2}>0 \\
\text { (2): } x_{1}+x_{2}=1, y_{1}+y_{2}=1 \\
\text { (3): } u_{A}\left(F, s_{B}\right)=u_{A}\left(C, s_{B}\right), u_{B}\left(s_{A}, F\right)=u_{B}\left(s_{A}, C\right) \\
u_{A}\left(F, s_{B}\right)=2 \times y_{1}+0 \times y_{2} \\
u_{A}\left(C, s_{B}\right)=0 \times y_{1}+1 \times y_{2}\left(s_{A}, F\right)=1 \times x_{1}+0 \times x_{2} \\
\text { So } 2 y_{1}=y_{2}
\end{array} \quad \begin{array}{l}
u_{B}\left(s_{A}, C\right)=0 \times x_{1}+2 \times x_{2}
\end{array}
\end{aligned}
$$

$\frac{\times}{\ll}$		Football	Concert
	Football	2,1	0,0
	Concert	0,0	1,2

Solve the equations in (2)(3) and get $s_{A}=$ $\left(\frac{2}{3}, \frac{1}{3}\right), s_{B}=\left(\frac{1}{3}, \frac{2}{3}\right)$ which satisfy (I). It is indeed a NE with specified support.

Find All NEs

- Support Enumeration Method (for bimatrix games)
* Enumerate all support pairs with the same size for size=1 to $\min _{i}\left|A_{i}\right|$
- For each possible support pair J_{1}, J_{2}, build and solve a LP
- An NE is found if the LP has a feasible solution

Find All NEs

- Support Enumeration Method (for bimatrix games)
* Enumerate all support pairs with the same size for size=1 to $\min _{i}\left|A_{i}\right|$
- For each possible support pair J_{1}, J_{2}, build and solve a LP

$$
\begin{aligned}
& \max _{x, y, v} \\
& x_{i} \geq 0, \forall i ; y_{j} \geq 0, \forall j \\
& x_{i}=0, \forall i \notin J_{1} ; y_{j}=0, \forall j \notin J_{2} \\
& \sum_{i \in J_{1}} x_{i}=1 \\
& \sum_{j \in J_{2}} y_{j}=1 \\
& \sum_{j \in J_{2}} y_{j} u_{1}(i, j)=v_{1}, \forall i \in J_{1} \\
& \sum_{i \in J_{1}} x_{i} u_{2}(i, j)=v_{2}, \forall j \in J_{2} \\
& \sum_{j \in J_{2}} y_{j} u_{1}(i, j) \leq v_{1}, \forall i \notin J_{1} \\
& \sum_{i \in J_{1}} x_{i} u_{2}(i, j) \leq v_{2}, \forall j \notin J_{2}
\end{aligned}
$$

- An NE is found if the LP has a feasible solution

Find All NEs

- Support Enumeration Method (for bimatrix games)
- Enumerate all support pairs with the same size for size=1 to $\min _{\mathrm{i}}\left|A_{i}\right|$
- For each possible support pair J_{1}, J_{2}, build and solve a LP
, Variables: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, v_{1}, v_{2}$
- Objective: a dummy one $\max _{x, y, v} 1$
* Constraints (Ib,Ic): Probabilities are nonnegative, probability of actions not in the support is zero
$\square x_{i} \geq 0, \forall i ; y_{j} \geq 0, \forall j ; x_{i}=0, \forall i \notin J_{1} ; y_{j}=0, \forall j \notin J_{2}$
- Constraints (2): Probability of taking actions in the support sum up to I
$\square \sum_{i \in J_{1}} x_{i}=1 ; \sum_{j \in J_{2}} y_{j}=1$
- Constraints (3): Expected utility (EU) of choosing any action is the support is the same when fixing the other player's strategy
$\square \sum_{j \in J_{2}} y_{j} u_{1}(i, j)=v_{1}, \forall i \in J_{1} ; \sum_{i \in J_{1}} x_{i} u_{2}(i, j)=v_{2}, \forall j \in J_{2}$
- Constraints (4):Actions not in support does not lead to higher expected utility $\square \sum_{j \in J_{2}} y_{j} u_{1}(i, j) \leq v_{1}, \forall i \notin J_{1} ; \sum_{i \in J_{1}} x_{i} u_{2}(i, j) \leq v_{2}, \forall j \notin J_{2}$
- An NE is found if the LP has a feasible solution

Compute Nash Equilibrium

- Find all Nash Equilibrium (two-player)
- Support Enumeration Method
- Lemke-Howson Algorithm
- Linear Complementarity (LCP) formulation (another special class of optimization problem)
- Solve by pivoting on support (similar to Simplex algorithm)
- In practice, available solvers/packages: nashpy (python), gambit project (http://www.gambit-project.org/)

