Reminder

- Course project progress report 2: come to OH for discussions!
- ▶ HW5 due 4/4
- PRA6 due 4/16

Artificial Intelligence Methods for Social Good Lecture 21:

Case Study: AI for Infrastructure Security

17-537 (9-unit) and 17-737 (12-unit) Fei Fang <u>feifang@cmu.edu</u>

Learning Objectives

- Describe the concept of
 - Dominant strategy
 - Stackelberg equilibrium
- Describe the Stackelberg Security Game (SSG) model
- Write down LP and MILP for solving a SSG
- For the airport protection problems, briefly describe
 - Significance/Motivation
 - Task being tackled, i.e., what is being solved/optimized
 - Model and method used to solve the problem
 - Evaluation process and criteria

		Cooperate	Defect
Dominant Stratogy	Cooperate	-1,-1	-3,0
Dominant Strategy	Defect	0,-3	-2,-2

- Dominant Strategy
 - One strategy is always better/never worse/never worse and sometimes better than any other strategy
 - Focus on single player's strategy
 - Not always exist
 - s_i strictly dominates s'_i if
 - s_i very weakly dominates s'_i if
 - s_i weakly dominates s'_i if

 s_i is a (strictly/very weakly/weakly) dominant strategy if it dominates s'_i , $\forall s'_i \in S_i$

		Cooperate	Defect
Dominant Stratogy	Cooperate	-1,-1	-3,0
Dominant Strategy	Defect	0,-3	-2,-2

Dominant Strategy

- One strategy is always better/never worse/never worse and sometimes better than any other strategy
- Focus on single player's strategy
- Not always exist
 - s_i strictly dominates s'_i if $\forall s_{-i}, u_i (s_i, s_{-i}) > u_i(s'_i, s_{-i})$
 - s_i very weakly dominates s'_i if $\forall s_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$

$$s_i \text{ weakly dominates } s'_i \text{ if } \forall s_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \\ \text{and } \exists s_{-i}, u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}) \end{cases}$$

 s_i is a (strictly/very weakly/weakly) dominant strategy if it dominates s'_i , $\forall s'_i \in S_i$

Dominant Strategy Equilibrium or Dominant Strategy Solution

- Dominant strategy equilibrium/solution
 - Every player plays a dominant strategy
 - Focus on strategy profile for all players
 - Not always exist
 - Can be found through enumeration

Q: Is there a dominant strategy equilibrium in the following game?

	Cooperate	Defect
Cooperate	- ,-	-3,0
Defect	0,-3	-2,-2

	С	d
а	2,1	4,0
b	١,0	3,2

Power of Commitment

▶ NE utility=(2,1)

- If leader (player I) commits to playing b, then player has to play d, leading to a utility of 3 for leader
- If leader (player 1) commits to playing a and b uniformly randomly, then player still has to play d, leading to a utility of 3.5 for leader

		Player 2		
_		С	d	
ayer	а	2,1	4,0	
Ы	b	١,0	3,2	

Best Response Function

- Recall: Best response: Set of actions or strategies leading to highest expected utility given the strategies or actions of other players
 - ▶ $a_i^* \in BR(a_{-i})$ iff $\forall a_i \in A_i, u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$
 - ▶ $s_i^* \in BR(s_{-i})$ iff $\forall s_i \in S_i, u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$

Best Response Function

- A mapping from a strategy of one player to a strategy of another player in the best response set
- ► $f: S_1 \rightarrow S_2$ is a best response function iff $u_2(s_1, f(s_1)) \ge u_2(s_1, s_2), \forall s_1 \in S_1, s_2 \in S_2$. Or equivalently, $u_2(s_1, f(s_1)) \ge u_2(s_1, a_2), \forall s_1 \in S_1, a_2 \in A_2$

Stackelberg Equilibrium

_		С	d
ayer	а	2,1	4,0
Ы	b	١,0	3,2

- Stackelberg Equilibrium
 - Focus on strategy profile for all players
 - Follower responds according a best response function
 - ($s_1, f(s_1)$) is a Stackelberg Equilibrium iff
 - I) f is a best response function
 - ▶ 2) $u_1(s_1, f(s_1)) \ge u_1(s'_1, f(s'_1)), \forall s'_1 \in S_1$
 - There may exist many Stackelberg Equilibria due to different best response functions. For some best response functions, the Stackelberg Equilibrium may not exist

If $f(p = \frac{1}{3}) = d$, then SE is $s_1 = \left(\frac{2}{3}, \frac{1}{3}\right), s_2 = (0,1)$ If $f(p = \frac{2}{3}) = c$, then SE does not exist

	_		с	d
Poll I	ayer	а	2, I	4,0
	⊒	b	١,0	3,2

- If the best response function break tie uniform randomly, does Stackelberg Equilibrium exist in this game?
 - A:Yes
 - B: No
 - C: I don't know

Strong Stackelberg Equilibrium

- Strong Stackelberg Equilibrium (SSE)
 - Follower breaks tie in favor of the leader
 - $(s_1, f(s_1))$ is a Strong Stackelberg Equilibrium iff
 - 1) f is a best response function
 - ▶ 2) $f(s) \in \underset{s_2 \in BR(s)}{\operatorname{argmax}} u_1(s, s_2)$
 - ▶ 3) $u_1(s_1, f(s_1)) \ge u_1(s'_1, f(s'_1)), \forall s'_1 \in S_1$
 - SSE always exist in two-player finite games

Strong Stackelberg Equilibrium

- Remarks about Strong Stackelberg Equilibrium (SSE)
 - There may exist many SSEs but the leader's utility is the same in all these equilibria
 - Leader can induce the follower to breaks tie in favor of the leader by perturbing the strategy in the right direction
 - SSE coincide with minmax/maxmin/NE in two-player zerosum finite games

Security Challenges

Security Challenges

Physical Infrastructure

Environmental Resources

Transportation Networks

Cyber Systems

Endangered Wildlife

Fisheries

Security Challenges

Improve tactics of patrol, inspection, screening etc

Protect Airports

- Limited resource allocation
- Adversary surveillance

Protect Airports

- Limited resource allocation
- Adversary surveillance

Protect Airports

- Randomization make defender unpredictable
- Stackelberg game
 - Leader: Defender; Commits to mixed strategy
 - Follower: Adversary; Conduct surveillance and best responds

Stackelberg Security Game (SSG)

- Leader: defender; Follower: attacker
- Defender allocate K resources to protect N targets
- Each target is associated with 4 values: R_i^d , P_i^d , R_i^a , P_i^a
 - If attacker attacks target i and succeeds: attacker gets R_i^a and defender gets P_i^d
 - ▶ If attacker attacks target *i* and fails: attacker gets $P_i^a (\leq R_i^a)$ and defender gets $R_i^d (\geq P_i^d)$

Stackelberg Security Game (SSG)

- Leader: defender; Follower: attacker
- Defender allocate K resources to protect N targets
- Each target is associated with 4 values: R_i^d , P_i^d , R_i^a , P_i^a
 - If attacker attacks target i and succeeds: attacker gets R_i^a and defender gets P_i^d
 - ▶ If attacker attacks target *i* and fails: attacker gets $P_i^a (\leq R_i^a)$ and defender gets $R_i^d (\geq P_i^d)$

Poll 2

- Given a Stackelberg Security game with N targets, if we use a bimatrix to represent the payoffs, how many numbers do we need? If we use the penalty/reward for defender/attacker to represent the payoffs, how many numbers do we need?
 - **A**: N^2 , 4N
 - **B**: N^2 , N^2
 - ▶ **C**:4*N*,4*N*
 - D:4*N*, N^2
 - E: None of the above
 - F: I don't know

Poll 3

- Let c_i be the probability the defender will protect target *i* in a Stackelberg security game, which of the following are the defender's expected utility when attacker attacks target *i*?
 - A: $c_i P_i^a + (1 c_i) R_i^a$
 - $B: c_i R_i^d + (1 c_i) P_i^d$
 - $C: P_i^d + c_i (R_i^d P_i^d)$
 - $D: R_i^a + c_i (P_i^a R_i^a)$
 - E: None of the above
 - F: I don't know

Compute SSE in SSG

 $AttEU(i) = c_i P_i^a + (1 - c_i) R_i^a$ $DefEU(i) = c_i R_i^d + (1 - c_i) P_i^d$

- Strong Stackelberg Equilibrium
 - Attacker break tie in favor of defender
 - AttEU(I)=0.556*(-3)+0.444*4=0.11
 - AttEU(2)=0.556*1+0.444*(-1)=0.11
 - DefEU(1)=0.556*5+0.444*(-5)=0.56
 - DefEU(2)=0.556*(-1)+0.444*2=0.332
 - Equilibrium: DefStrat=(0.556,0.444), AttStrat=(1,0)

$AttEU(i) = c_i P_i^a + (1 - c_i) R_i^a$ $DefEU(i) = c_i R_i^d + (1 - c_i) P_i^d$

General-sum

- Multiple LP
 - One LP for each target: Assume attacks target i^*

Choose the solution of the LP with the highest optimal value

$AttEU(i) = c_i P_i^a + (1 - c_i) R_i^a$ $DefEU(i) = c_i R_i^d + (1 - c_i) P_i^d$

General-sum

- Multiple LP
 - One LP for each target: Assume attacks target i^*

 $\max_{c} DefEU(i^{*})$ s.t. $AttEU(i^{*}) \ge AttEU(i), \forall i = 1 \dots N$ $\sum_{i} c_{i} \le 1$ $c_{i} \in [0,1]$

Choose the solution of the LP with the highest optimal value

$AttEU(i) = c_i P_i^a + (1 - c_i) R_i^a$ $DefEU(i) = c_i R_i^d + (1 - c_i) P_i^d$

General-sum

MILP

- Let $q_i \in \{0,1\}$ to indicate whether attacker attacks target i
- Let M be a large constant, say 10^5

$$\max_{\mathbf{c},\mathbf{q},\nu} \sum_{i} DefEU(i)q_{i}$$
s.t. $0 \le \nu - AttEU(i) \le (1 - q_{i})M, \forall i$

$$\sum_{i} c_{i} \le 1$$

$$\sum_{i} q_{i} = 1$$

$$c_{i} \in [0,1], q_{i} \in \{0,1\}$$

$AttEU(i) = c_i P_i^a + (1 - c_i) R_i^a$ $DefEU(i) = c_i R_i^d + (1 - c_i) P_i^d$

- Zero-sum
 - Single LP
 - SSE=NE=Minimax=Maximin

$$\min_{\substack{\mathbf{c}, v \\ \mathbf{s.t.} \ v \ge AttEU(i), \forall i = 1 \dots N} \sum_{i} c_i \le 1$$
$$c_i \in [0, 1]$$

ARMOR: Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security

January 2009

- •January 3rd •January 9th
- •January 10th
- •January 12th
- •January 17th
- •January 22nd

Loaded 9/mm pistol I 6-handguns, I 000 rounds of ammo Two unloaded shotguns Loaded 22/cal rifle Loaded 9/mm pistol Unloaded 9/mm pistol

ARMOR for AIRPORT SECURITY at LAX [2008] Congressional Subcommittee Hearings

Commendations City of Los Angeles

Erroll Southers testimony Congressional subcommittee

ARMOR...throws a digital cloak of invisibility....

Compute optimal defender strategy

- Polynomial time solvable in games with finite actions and simple structures [Conitzer06]
- NP-Hard in general settings [Korzhyk10]
- SSE=NE for zero-sum games, SSE⊂NE for games with special properties [Yin10]
- Research Challenges
 - Massive scale games with constraints
 - Plan/reason under uncertainty
 - Repeated interaction

Challenge: Scheduling Constraints and Scalability

Mumbai Police Checkpoints

Challenge: Scheduling Constraints and Scalability

- Defender: Choose K checkpoints
- Attacker: Choose a target node (red) and a path from an entry node (green) to the target node
- Exponentially many pure strategies

Fully connected road network 20 intersections, 190 roads 5 resources, 1 target ~ 2 billion defender allocations 6.6 quintillion (10¹⁸) attacker paths Real Problem: ~500 intersections ~2000 roads

Double Oracle

- Intuition: No need to consider all possible pure strategies
- Start with a small set of pure strategies
- Iteratively add new pure strategies to be considered
- Provably converge to equilibrium in zero-sum games

Payoff Matrix (When Zero-Sum)

Double Oracle Algorithm

Variation

Defender Strategy: [1.0] Attacker Strategy: [1.0]

Minimax strategy: Defender Strategy: [1.0] Attacker Strategy: [1.0]

Defender's best response: e1 or e2 Best response already in the table, no change

Minimax strategy: no change

Minimax strategy: Defender Strategy: [1.0] Attacker Strategy: [1.0]

Attacker's best response: s->e4->e3->t or s->e5->t

Pick an arbitrary one, say s->e4->e3->t

Defender Strategy: [1.0] Attacker Strategy: [0.0, 1.0]

Minimax strategy: Defender Strategy: [1.0] Attacker Strategy: [0.0, 1.0]

Defender's best response: e3 or e4

Pick e3

Minimax strategy: Defender Strategy: [0.5, 0.5] Attacker Strategy: [0.5, 0.5]

Minimax strategy: Defender Strategy: [0.5, 0.5] Attacker Strategy: [0.5, 0.5]

Attacker's best response: s->e5->t

Minimax strategy: Defender Strategy: arbitrary, say [1.0, 0.0] Attacker Strategy: [0.0, 0.0, 1.0]

Minimax strategy: Defender Strategy: [1.0, 0.0] Attacker Strategy: [0.0, 0.0, 1.0]

Defender's best response: e5

Defender Strategy: [1/3, 1/3, 1/3] Attacker Strategy: [1/3, 1/3, 1/3] No new best responses will be added in the next iteration. Terminate.

Poll 4

- Assume the following table is the game matrix (zero-sum). At some point in the process of the double oracle algorithm, a smaller game is being considered, with row 1, 2 and column 3,4. What action should be added in the next iteration?
- $\blacktriangleright A_1$
- \bullet A_2
- ► X₁
- **Attacker Paths** $\blacktriangleright X_2$

Defender X_1 : Allocations X_2 :

 $A_1 \quad A_2 \quad A_3$ -9

 $\begin{vmatrix}
-5 & -8 & 0 \\
0 & -8 & -15
\end{vmatrix}$

Poll 4

- Assume the following table is the game matrix (zero-sum). At some point in the process of the double oracle algorithm, a smaller game is being considered, with row 1, 2 and column 3,4. What action should be added in the next iteration?
- $\blacktriangleright A_1$ The minimax strategy of this smaller game is Def: (5/8, 3/8), Att: \bullet A_2 (3/8,5/8). Expected utility for attacker of taking each of the action is 5*5/8, 8, 15*3/8, 9*5/8 ► X₁
- **Attacker Paths** $\blacktriangleright X_2$ $A_1 \quad A_2 \quad A_3$ None Defender X_1 : $\begin{bmatrix} -5 & -8 & 0 & -9 \\ 0 & -8 & -15 & 0 \end{bmatrix}$

Allocations X_2 :

Initialize with some subset of pure strategies (e.g., for defender, K edges in the min-cut)

Better Responses

- No need to find the best response
- If you find a better response but not sure if it is the best response, it is OK to add it and move on
- If you cannot find a better response, it means the best response is already in the current support
- Impact on computation time varies

Column Generation: Using One Oracle Only

Attacker Paths

		s->el->e2->t
Defender Allocations	el	
	e2	
	e3	-T, T
	e4	- T,T
	e5	-T,T

54 / 44

Additional Resources and References

Additional Resources

- Deployed ARMOR Protection: The Application of a Game <u>Theoretic Model for Security at the Los Angeles</u> <u>International Airport</u>
- A Double Oracle Algorithm for Zero-Sum Security Games on Graphs

References

- Conitzer, Vincent, and Tuomas Sandholm. "Computing the optimal strategy to commit to." In Proceedings of the 7th ACM conference on Electronic commerce, pp. 82-90. 2006.
- McMahan, H. Brendan, Geoffrey J. Gordon, and Avrim Blum. "Planning in the presence of cost functions controlled by an adversary." In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 536-543. 2003.

Backup Slides