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Recap: Stackelberg Security Games

 Stackelberg Security game

 Defender: Commits to mixed strategy

 Adversary: Conduct surveillance and best responds

 Expected Utility

Target #1 Target #2

Target #1 5, -3 -1, 1

Target #2 -5, 4 2, -1

Adversary

Defender

55.6%

44.4%

4/3/20243/72

𝐴𝑡𝑡𝐸𝑈 𝑖 = 𝑐𝑖𝑃𝑖
𝑎 + (1 − 𝑐𝑖)𝑅𝑖

𝑎

𝐷𝑒𝑓𝐸𝑈 𝑖 = 𝑐𝑖𝑅𝑖
𝑑 + (1 − 𝑐𝑖)𝑃𝑖

𝑑



Recap: Game Theory for Ferry Protection

 Optimize the use of patrol resources

4 4/3/2024



Green Security Domains

 How are these domains similar to / different from 

airport / port security?

 Similarity: 

 Difference:

4/3/2024Fei Fang5

Environmental Resources Endangered Wildlife Fisheries



Challenges in Green Security Domains

 Frequent and repeated attacks
 Not one-shot

 Attacker decision making
 Limited surveillance / Less effort / Boundedly rational

 Real-world data
 Sparse / Incomplete / Uncertainty / Noise

 Real-world deployment
 Practical constraints

 Field test

4/3/20246/67



Challenges in Wildlife Conservation Domain

 Perfectly rational (Maximize expected utility)? No!

?

4/3/20247/67



Challenges in Wildlife Conservation Domain

 Real-world data

??

??

? ? ?
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Outline

 Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models

 Quantal Response Based Models

 PAWS Application

 Other Models (Optional)

 Discussion (Optional)
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Learning Objectives

 Write down the mathematical formulation of

 Prospect Theory

 Quantal Response

 Subjective Utility Quantal Response

 Understand and describe the high-level idea of

 Anchoring bias

 Epsilon-bounded rationality

 For PAWS application, describe the target problem, 

method used, evaluation criteria

4/3/2024Fei Fang10



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models (optional)
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202411/67



PT: Prospect Theory 

 Option 1: 20% chance to get $500

 Option 2: 100% chance to get $100

 Which one will you choose?

 Option 1: 20% chance to lose $500

 Option 2: 100% chance to lose $100

 Which one will you choose?

4/3/2024Fei Fang12



PT: Prospect Theory 

 Model human decision making under uncertainty

 Maximize the ‘prospect’ [Kahneman and Tvesky, 1979]

 π(·): weighting function

 V(·): value function

 Defender: choose a strategy that maximizes DefEU when 

attacker best responds to the expected prospect (instead of 

AttEU)




=
sAllOutcomei

ii CVx )()( prospect 

4/3/202413/67 Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision 

under risk. Econometrica: Journal of the econometric society, 263-291.



PT: Prospect Theory 

 Empirical Weighting 

Function

 Slope gets steeper as x 

gets closer to 0 and 1

 Not consistent with 

probability definition

➢ π(x)+π(1−x) < 1

 Empirical value:

 γ=0.64 (0<γ<1)

4/3/202414/67 Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision 

under risk. Econometrica: Journal of the econometric society, 263-291.



PT: Prospect Theory 

 Empirical Value Function

 Risk averse regarding gain

 Risk seeking regarding 

loss

 Empirical value:

 α=β=0.88, λ=2.25

4/3/202415/67 Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision 

under risk. Econometrica: Journal of the econometric society, 263-291.



Human Subject Experiments

 Learn parameters from human subject experiments

4/3/2024Fei Fang16



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models (optional)
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202417/67



COBRA: Anchoring Bias and Epsilon-Bounded Rationality

 Suppose you observe the defender’s airport patrol 

strategy for 2 days, and find that the defender goes to 

terminal 1 in both days

 Which one of the following do you believe is closer 

to the actual strategy used by the defender?

 (1,0)

 (0.5,0.5)

 (0.8,0.2)

 Anchoring bias: Full observation (𝛼 = 0) vs no 

observation (𝛼 = 1)

4/3/202418/67 Pita et al. Effective solutions for real-world stackelberg games: When agents 

must deal with human uncertainties. In AAMAS, 2009.

𝑥′ = 1 − 𝛼 𝑥 +
𝛼

𝑁



COBRA: Anchoring Bias and Epsilon-Bounded Rationality

  “epsilon optimality”

 Any target whose expected utility is at least 𝐴𝑡𝑡𝐸𝑈∗ − 𝜖 

may be attacked

 Do not assume a specific target to be attacked

4/3/202419/67 Pita et al. Effective solutions for real-world stackelberg games: When agents 

must deal with human uncertainties. In AAMAS, 2009.

1 2 3 4

𝜖



COBRA: Anchoring Bias and Epsilon-Bounded Rationality

 Compute defender’s strategy assuming anchoring bias 

and epsilon-bounded rationality

 Human subject experiments: 𝛼 = 0.37 works best

max
𝑥,𝑞,𝛾,𝑎

𝛾

𝑠. 𝑡. 𝑥′ = 1 − 𝛼 𝑥 +
𝛼

𝑁
𝑎 is attacker’s highest expected utility given 𝑥′

𝑞𝑗 = 1 if AttEU𝑗(𝑥′) ≥ 𝑎 − 𝜖

𝛾 ≤ DefEU𝑗(x) if 𝑞𝑗 = 1

4/3/202420/67 Pita et al. Effective solutions for real-world stackelberg games: When agents 

must deal with human uncertainties. In AAMAS, 2009.

Q: What values of 𝛼 and 𝜖 will make it same as the 

basic Stackelberg Security Game setting?



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models (optional)
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202421/67



MATCH: Attacker aims to reduce the defender’s utility

 Attacker may deviate from the best response to 

reduce the defender’s expected utility

 Choose a target to maximize
Defender’s utility loss due to deviation

Adversary’s utility loss due to deviation

 Defender: choose a strategy that maximize DefEU 

while bound the above value by 𝛽

 Experiments: 𝛽 = 1

4/3/202422/67 Pita et al. A robust approach to addressing human adversaries in security games. 

In ECAI, 2012



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models (optional)
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202423/67



QR: Quantal Response Model

 Error in individual’s response  

 Still: more likely to select better choices than worse 

choices

 Probability distribution of different responses

 Quantal best response:

 λ: represents error level (=0 means uniform random)

 Maximal likelihood estimation (λ=0.76)

𝑞𝑗 =
𝑒𝜆∗AttEU𝑗(𝑥)

σ𝑖 𝑒𝜆∗AttEU𝑖(𝑥)

4/3/202424/67 McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal 

form games. Games and economic behavior, 10(1), 6-38.



Poll 1: Quantal Response Model

 If there are two choices (actions), what is the 

probability of choosing the first action if the player 

follows quantal response model with 𝜆 = 0?

 A: 1

 B: 0

 C: 
1

2

 D: 
1

𝑒
≈ 0.368

 E: None of the above

 F: I don’t know

4/3/2024Fei Fang25

𝑞𝑗 =
𝑒𝜆∗AttEU𝑗(𝑥)

σ𝑖 𝑒𝜆∗AttEU𝑖(𝑥)



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models (optional)
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202426/67



SUQR: Subjective Utility Quantal Response Model

 SEU𝑗 = σ𝑘 𝑤𝑘 × 𝑓𝑗
𝑘 ,  𝑞𝑗 =

𝑒
𝜆∗SEU𝑗(𝑥)

σ𝑖 𝑒𝜆∗SEU𝑖(𝑥)

 

Coverage Probability 

+ Reward/Penalty

Attack Probability

SUQR

4/3/202427/67 Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., & Tambe, M. Analyzing the 

Effectiveness of Adversary Modeling in Security Games. In AAAI, 2013.



SUQR: Subjective Utility Quantal Response Model

 Compute the optimal defender strategy

4/3/2024Fei Fang28



Comparison of Model Performance

 Prospect Theory < DOBSS < COBRA < Quantal 

Response < MATCH < SUQR

-3

-2

-1

0

Payoff 1 Payoff 2 Payoff 3 Payoff 4

Quantal
Response
Epsilon
robust
Perfect
rational

MATCH

wins
Draw

QR

wins

42 52 6

MATCH

wins
Draw

SUQR

wins

1 8 13

4/3/202429/67 Nguyen, T. H., Yang, R., Azaria, A., Kraus, S., & Tambe, M. Analyzing the 

Effectiveness of Adversary Modeling in Security Games. In AAAI, 2013.



Outline

 Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models

 Quantal Response Based Models

 PAWS Application

 Other Models (Optional)

 Discussion (Optional)

4/3/202430/67



LEARN POACHERS’ BEHAVIOR MODEL

 Use SUQR with 

parameters learned 

from human subject 

experiments

 Q: Can we use data 

from previous patrols?

2/14/201631/45



GAME-THEORETIC REASONING

2/14/201632/45

Where to 
place snares?

Where to 
patrol?



GAME-THEORETIC PATROL STRATEGY DESIGN

 Challenge for PAWS: Payoff uncertainty

 ARROW algorithm (Nguyen et al. 15)

 Behavioral minimax regret

2/14/201633/45

Payoff uncertainty

Poacher behavior model

Coverage probability

ARROW

0.1 0.3 0.1 0.05 0

0 0.05 0 0.1 0.05

0.1 0.15 0.2 0.18 0.15

0.03 0.03 0.3 0.03 0.18

0.05 0.2 0.18 0.03 0.05



0.1 0.3 0.1 0.05 0

0 0.05 0 0.1 0.05

0.1 0.15 0.2 0.18 0.15

0.03 0.03 0.3 0.03 0.18

0.05 0.2 0.18 0.03 0.05

ROUTE PLANNING

 Coverage probability → route to take

 First challenge: Impossible to implement coverage

2/14/201634/45

0.15



MODIFIED ARROW + BLADE

ARROW: calculate coverage prob. 𝑐

Is 𝑐 implementable?

Yes

Solution Found

No Find a constraint 

𝑔 𝑐 ≤ 0

with constraint 𝑔 𝑐 ≤ 0

2/14/201635/45 Rong Yang, Albert Xin Jiang, Milind Tambe, Fernando Ordonez. Scaling-up Security Games 

with Boundedly Rational Adversaries: A Cutting-plane Approach. IJCAI'13



ROUTE PLANNING

 Coverage probability 𝑐 → route to take

 Second challenge: Route not compatible with terrain

2/14/201636/45



0.1 0.3 0.1 0.05 0

0 0.05 0 0.1 0.05

0.1 0.15 0.2 0.18 0.15

0.03 0.03 0.3 0.03 0.18

0.05 0.2 0.18 0.03 0.05

COMPLEX TOPOGRAPHICAL INFORMATION

Patrol Route (2D)

Patrol Route (3D)

2/14/201637/45



FIRST TESTS

 Test in Malaysia

2/14/201638/45



FIRST TESTS

 Test in Uganda

2/14/201639/45



TRIAL PATROL IN THE FIELD

 8-hour patrol in April 2015: patrolling is not easy!

2/14/201640/45



TRIAL PATROL IN THE FIELD

2/14/201641/45



COMPLEX TOPOGRAPHICAL INFORMATION

 Fine discretization → huge number of patrol routes

 Novel solution:

 Focus on terrain features

 Hierarchical modeling → virtual street map

2/14/201642/45



COMPLEX TOPOGRAPHICAL INFORMATION

 Terrain feature, e.g., ridgeline

2/14/201643/45



ROUTE PLANNING

2/14/201644/45



HIERARCHICAL MODEL

 Attacker action: choose a grid cell to place snares

 Defender action: choose a path on the street map

Ridgeline

Stream

Street Map

Patrol Route

2/14/201645/45



BEFORE REAL-WORLD DEPLOYMENT

 Practical constraints (1)

 Short downhill followed by returning uphill is annoying

2/14/201646/45



BEFORE REAL-WORLD DEPLOYMENT

 Practical constraints (I1)

 Patrol time = 5 hours = walking time + recording time

2/14/201647/45



EXAMPLE OUTPUT OF PAWS

 1 day patrol starting from a base camp

 Sample one route according to the probability every 

day
Prob=0.58

Prob=0.16

Prob=0.12

Prob=0.08

Prob=0.06

2/14/201648/45



PAWS PATROLS IN THE FIELD

Basic Information of PAWS Patrols

Average Trip Length 4.67 Days

Average Number of Patrollers 5

Average Patrol Time Per Day 4.48 hours

Average Patrol Distance Per Day 9.29 km

2/14/201649/45



PAWS PATROLS IN THE FIELD

2/14/201650/45



PAWS PATROLS IN THE FIELD

Animal Footprint

Tiger Sign

Tree Mark

Lighter

Camping Sign

2/14/201651/45



PAWS PATROLS IN THE FIELD

0

0.2

0.4

0.6

0.8

1

1.2

Human Activity Sign/km Animal Sign/km

Previous Patrol PAWS Patrol Explorative PAWS Patrol

2/18/2016Fei Fang52/70



FUTURE DEPLOYMENT

 Queen Elizabeth National Park in Uganda

 Tested in Spring 2014

 PAWS with CAPTURE tool: Deploy later this year

2/14/201653/45



Protected Area 
Information

Past Patrolling and 
Poaching Information

Patrol Routes
Poaching Data Collected

Learn Behavior Model

Game-theoretic 
Reasoning

Route Planning

PAWS SUMMARY

2/14/201654/45



Outline

 Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models

 Quantal Response Based Models

 PAWS Application

 Other Models (Optional)

 Discussion (Optional)
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Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202456/67



GSG: Incorporating Delayed Observation 

 Frequent and repeated attacks

 Not one-shot / More data

 Attacker decision making

 Limited surveillance / Less effort / Boundedly rational

 New model: Green Security Games

Wildlife Forest Fishery

4/3/202457/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=wpBcwjxieLDbgM&tbnid=vaE0_oKQu3-xsM:&ved=0CAUQjRw&url=http://www.greenvitals.net/greenvitalsnet/2010/7/27/experts-reassure-public-of-seafood-safety-as-gulf-of-mexico.html&ei=11eFUbjrMYmE9QShjoDIDQ&psig=AFQjCNHqi3MFAnwoI9j_WGuQMTwoAp05Bw&ust=1367779384259717


GSG: Incorporating Delayed Observation 

Defender

Poacher

x x x xTime

4/3/202458/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

Poacher

Defender Hidden from poacher

x x x x

Poachers’ 

understanding

Time

4/3/202459/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

Poacher

Defender

x x x x

Poachers’ 

understanding

Time

4/3/202460/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

 A Green Security Game (GSG) is a 𝑇 stage game 

where the defender protects 𝑁 targets against 𝐿 

attackers. Defender chooses a mixed strategy 𝑐𝑡 in 

stage 𝑡.

 A GSG attacker is characterized by his memory 

length Γ, coefficients 𝛼0, … , 𝛼Γ and SUQR model 

parameter 𝜔. In stage 𝑡, he responds to a convex 

combination of defender strategy in recent Γ + 1 

rounds: 𝜂𝑡 = σ𝜏=0
Γ 𝛼𝜏𝑐𝑡−𝜏

4/3/202461/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

 Plan Ahead – M (PA-M)

 Plan ahead M stages

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

4/3/202462/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

 Plan Ahead – M (PA-M)

 Plan ahead M stages

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

4/3/202463/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

 An alternative: Fixed Sequence – M (FS-M)

 Use M strategies repeatedly

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

4/3/202464/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



GSG: Incorporating Delayed Observation 

 Theorem 3: In a GSG with 𝑇 rounds, for Γ < M ≤ 𝑇, there 
exists a cyclic defender strategy profile [𝑠] with period 𝑀 that 

is a (1 −
Γ 

𝑇
)

𝑍−1

𝑍+1
 approximation of the optimal strategy profile 

in terms of the normalized utility, where 𝑍 =
𝑇−Γ+1

𝑀
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4/3/202465/67 Fang, F., Stone, P., & Tambe, M. When Security Games Go Green: Designing 

Defender Strategies to Prevent Poaching and Illegal Fishing. In IJCAI, 2015.



Modeling and Learning Human Behavior in Games

 Uncertainty and Bias Based Models
 Prospect Theory [Kahneman and Tvesky, 1979]

 Anchoring bias and epsilon-bounded rationality [Pita et al, 
2010]

 Attacker aims to reduce the defender’s utility [Pita et al, 
2012]

 Quantal Response Based Models
 Quantal Response [McKelvey and Palfrey, 1995]

 Subjective Utility Quantal Response [Nguyen et al, 2013]

 Other Models
 Incorporating delayed observation [Fang et al, 2015]

 Bounded rationality in repeated games [Kar et al, 2015]

4/3/202466/67



SHARP: Bounded Rationality in Repeated Games

4/3/202467/67 Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M. A game of thrones: when human 

behavior models compete in repeated Stackelberg security games. In AAMAS, 2015



SHARP: Bounded Rationality in Repeated Games
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4/3/202468/67 Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M. A game of thrones: when human 

behavior models compete in repeated Stackelberg security games. In AAMAS, 2015



SHARP: Bounded Rationality in Repeated Games
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4/3/202469/67 Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M. A game of thrones: when human 

behavior models compete in repeated Stackelberg security games. In AAMAS, 2015



SHARP: Bounded Rationality in Repeated Games

 Adversary’s probability weighting function is S-shaped.

 Contrary to Prospect Theory

4/3/202470/67 Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M. A game of thrones: when human 

behavior models compete in repeated Stackelberg security games. In AAMAS, 2015



SHARP: Bounded Rationality in Repeated Games

 Q: According to the learned weighting function, which 

is S-shaped, the human players are over/under?-

estimating the probability of getting caught when the 

probability is low

4/3/2024Fei Fang71



SHARP: Bounded Rationality in Repeated Games
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4/3/202472/67 Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M. A game of thrones: when human 

behavior models compete in repeated Stackelberg security games. In AAMAS, 2015



Other Models

 Cognitive Hierarchy

 Instance-based Learning Theory (IBLT)

4/3/2024Fei Fang73



Discussion

 Limitations of the models introduced today?

4/3/2024Fei Fang74
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