Reminder

- PRA6 due 4/I6
- HW6 due 4/25
- Course project presentation 4/23 and 4/25

Come to OH for discussions!

Artificial Intelligence Methods for Social Good Lecture 23

Case Study: Optimizing Kidney Exchange

17-537 (9-unit) and 17-737 (I2-unit)
 Instructor: Fei Fang
 feifang@cmu.edu

Recall: 0-I Knapsack

- 0-I Knapsack
- Maximum weight $=10$
- How to select items to maximize total value?

Items	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Weight	5	4	2	6	7
Value	4	3	6	9	5

$$
\begin{gathered}
\max 4 x_{1}+3 x_{2}+6 x_{3}+9 x_{4}+5 x_{5} \\
\text { s.t. } 5 x_{1}+4 x_{2}+2 x_{3}+6 x_{4}+7 x_{5} \leq 10 \\
x_{i} \in\{0,1\}
\end{gathered}
$$

Recall: LP Relaxation

- LP relaxation of an MILP or BIP is the LP with the same linear constraints
MILP
$\max _{x} c^{T} x$
s.t. $G x \leq h$
$x_{i} \in \mathbb{Z}, i \in J_{Z}$

BIP
$\max c^{T} x$
s.t. $G x \leq h$

$$
x_{i} \in\{0,1\}, \forall i
$$

LP Relaxation
$\max c^{T} x$ x
s.t. $G x \leq h$

LP Relaxation
$\max c^{T} x$ x
s.t. $G x \leq h$

$$
x_{i} \in[0,1]
$$

Outline

- Basic Kidney Exchange Problem
- Branch and Bound
- Column Generation
- Extension and Discussion

Learning Objectives

- For the kidney exchange problems, briefly describe
, Significance/Motivation
- Task being tackled, i.e., what is being predicted/estimated/prescribed
- Data usage, i.e., what data is used and how it is processed
- Domain-specific considerations
- Al method used
- Evaluation process and criteria
- Describe Branch and Bound and Column Generation methods

Kidney Exchange

Kidney Exchange Model

- Given directed graph $G=(V, E)$, where each node represent a patient-donor pair, and an edge $\langle u, v\rangle$ means donor of node u can give one kidney to patient of node v
- The clearing problem: Find a set of disjoint cycles with length $\leq L$ so as to maximize some objective function, e.g., total number of patients matched

What would be a reasonable L ?

Poll I: Kidney Exchange

- Given the graph below, what is the maximum number of patients that can get a kidney through kidney exchange assuming the length of each cycle should be less than or equal to 3?
- $A: 3$
- B: 6
- C: 7
, D: 8
- E: None of the above
- F:I don't know

Cycle-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the number of patients matched
- Decision variables?
- Constraints?
- Objective function?

Cycle-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the number of patients matched
- Decision variables?
- Constraints?
- Objective function?

Hint: enumerate all the cycles

$$
\max _{x} \sum_{c} x_{c} l_{c}
$$

$$
\text { s.t. } \sum_{c: v \in c} x_{c} \leq 1, \forall v \in V
$$

$$
x_{c} \in\{0,1\}, \forall c
$$

Cycle-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the total weight if each edge has a weight?
- Decision variables?
- Constraints?
- Objective function?

Max cardinality case is just when all weight $=1$

Cycle-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the total weight if each edge has a weight?
- Decision variables?
- Constraints?
- Objective function?
w_{c} : total weight of the cycle c

$$
\max _{x} \sum_{c} x_{c} w_{c}
$$

s.t. $\sum_{c: v \in c} x_{c} \leq 1, \forall v \in V$

$$
x_{c} \in\{0,1\}, \forall c
$$

Max cardinality case is just when all weight $=1$

Cycle-Based ILP Formulation

- Limitation: Can only solve for a problem with a few hundred patients How to improve scalability?

Edge-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the total weight
- Decision variables?
- Constraints?
- Objective function?

Edge-Based ILP Formulation

- Find a set of disjoint cycles with length $\leq L$ so as to maximize the total weight

Decision variables?

- Constraints?
- Objective function?

Hint: Use flow conservation constraints
y_{e} : whether edge e will be selected

s.t. $\sum_{e \in v \rightarrow} y_{e}-\sum_{e \in \rightarrow v} y_{e}=0, \forall v \in V$

$$
\sum_{e \in v \rightarrow} y_{e} \leq 1, \forall v \in V
$$

$$
y_{e} \in\{0,1\}, \forall e
$$

$$
\sum_{e \in P} y_{e} \leq L-1, \forall P \in
$$

$\{$ Acyclic paths with length L \}

Complexity of the Clearing Problem

$$
\begin{gathered}
\max _{x} \sum_{c} x_{c} w_{c} \\
\text { s.t. } \sum_{c: v \in c} x_{c} \leq 1, \forall v \in V \\
x_{c} \in\{0,1\}, \forall c
\end{gathered}
$$

- When $L=2$, the clearing problem can be solved in polynomial time
- Satisfy total unimodulaity, can solve the LP relaxation directly
- The clearing problem with $2<L<+\infty$ is NPcomplete

Complexity of the Clearing Problem

- When $L=+\infty$, i.e., no length constraint, the clearing problem can be solved in polynomial time (maximum weight bipartite matching, Hungarian Maximum Matching Algorithm)

How would max length make a difference?

- Significantly better solutions can be obtained by just allowing cycles of length 3 instead of allowing 2-cycles only. In practice, a cycle length cap of 3 is typically used.

Kidney Exchange with Chains

- What if an altruist donor enters the pool offering to donate a kidney to any needy candidate in the pool without a candidate patient?

Does not scale when L is too large.

Kidney Exchange with Chains

- What if an altruist donor enters the pool offering to donate a kidney to any needy candidate in the pool without a candidate patient?

Does not scale when L is too large.

How would max length make a difference?

With UNOS data

How would max length make a difference?

Outline

- Basic Kidney Exchange Problem
- Branch and Bound
- Column Generation

Improve the scalability

- Extension and Discussion

Recall: Depth-First Search for BIP

$$
\begin{gathered}
\max 4 x_{1}+3 x_{2}+6 x_{3}+9 x_{4}+5 x_{5} \\
\text { s.t. } 5 x_{1}+4 x_{2}+2 x_{3}+6 x_{4}+7 x_{5} \leq 10 \\
x_{i} \in\{0,1\}
\end{gathered}
$$

Cannot expand to this gray node because the constraint is violated

Recall: Depth-First Search for BIP

- Can we prune the branches and make search more efficient?

$$
\begin{gathered}
\max 4 x_{1}+3 x_{2}+6 x_{3}+9 x_{4}+5 x_{5} \\
\text { s.t. } 5 x_{1}+4 x_{2}+2 x_{3}+6 x_{4}+7 x_{5} \leq 10 \\
x_{i} \in\{0,1\}
\end{gathered}
$$

Estimate upper bound!

Upper Bound (if maximization): LP Relaxation

$$
\begin{gathered}
\max 4 x_{1}+3 x_{2}+6 x_{3}+9 x_{4}+5 x_{5} \\
\text { s.t. } 5 x_{1}+4 x_{2}+2 x_{3}+6 x_{4}+7 x_{5} \leq 10 \\
x_{i} \in\{0,1\}
\end{gathered}
$$

Upper Bound (if maximization): LP Relaxation

Branch and Bound for BIP

- Branch and Bound overview (assuming maximization)
- Heuristic search
- Use optimal objective value of LP relaxation (upper bound) as the heuristic function
- Always expand the node with the best upper bound first (poly-time computable)
- Terminate early when best upper bound of remaining nodes is worse than the current best solution

Branch and Bound for BIP: Example

Branch and Bound for BIP

- Solve-LP (\mathcal{C}) returns (f, x), the optimal objective value and the optimal solution for the LP relaxation of the original problem with additional constraints \mathcal{C}

Algorithm: Branch and Bound for BIP

Input: A BIP with $x_{i}, i=1 . . n$ as variables
Initialize nodelist with Solve-LP(\{\})
Repeat
Remove a node with best f from nodelist: (f, x, \mathcal{C})
If x are all integer valued, return (f, x)
Get a feasible integer solution \hat{x} based on x, update current best (\bar{f}, \bar{x})
If $\bar{f} \leq f+\epsilon$, return (\bar{f}, \bar{x})
Choose a variable x_{i} that is not integer valued and add two nodes
Solve-LP(C $\left.\cup\left\{x_{i}=0\right\}\right)$ and Solve-LP(C $\left.\cup\left\{x_{i}=1\right\}\right)$ to nodelist Until nodelist is empty

Branch and Bound for MILP

- For MILP
- BnB: For each integer variable, branching a node by considering $x_{i} \leq\left\lfloor\widetilde{x_{i}}\right\rfloor$ and $x_{i} \geq\left\lceil\widetilde{x_{i}}\right\rceil$ where $\widetilde{x_{i}}$ is a noninteger value
- Standard BnB has already been integrated into existing (M)ILP solvers in Cplex and Gurobi
- Extension: Branch and Cut
- On top of branch and bound, use cutting planes (which are essentially linear constraints) to separate current noninteger solution and integer solutions

Outline

- Basic Kidney Exchange Problem
- Branch and Bound
- Column Generation
- Extension and Discussion

Column Generation

- In kidney exchange: too many edges and cycles
- Even solving the relaxed LPs is challenging
- Too many variables (cycle-based formulation) or constraints (edge-based formulation)

	Edges		Length 2 \& 3 cycles	
Patients	Mean	Max	Mean	Max
100	$2.38 \mathrm{e}+3$	$2.79 \mathrm{e}+3$	$2.76 \mathrm{e}+3$	$5.90 \mathrm{e}+3$
500	$6.19 \mathrm{e}+4$	$6.68 \mathrm{e}+4$	$3.96 \mathrm{e}+5$	$5.27 \mathrm{e}+5$
1000	$2.44 \mathrm{e}+5$	$2.68 \mathrm{e}+5$	$3.31 \mathrm{e}+6$	$4.57 \mathrm{e}+6$
2000	$9.60 \mathrm{e}+5$	$1.02 \mathrm{e}+6$	$2.50 \mathrm{e}+7$	$3.26 \mathrm{e}+7$
3000	$2.19 \mathrm{e}+6$	$2.28 \mathrm{e}+6$	$8.70 \mathrm{e}+7$	$9.64 \mathrm{e}+7$
4000	$3.86 \mathrm{e}+6$	$3.97 \mathrm{e}+6$	$1.94 \mathrm{e}+8$	$2.14 \mathrm{e}+8$
5000	$5.67 \mathrm{e}+6$	$6.33 \mathrm{e}+6$	$3.60 \mathrm{e}+8$	$4.59 \mathrm{e}+8$
6000	$8.80 \mathrm{e}+6$	$8.95 \mathrm{e}+6$		
7000	$1.19 \mathrm{e}+7$	$1.21 \mathrm{e}+7$		
8000	$1.56 \mathrm{e}+7$	$1.59 \mathrm{e}+7$		
9000	$1.98 \mathrm{e}+7$	$2.02 \mathrm{e}+7$		
10000	$2.44 \mathrm{e}+7$	$2.51 \mathrm{e}+7$		

Column Generation for Solving LPs

- Start with a restricted LP containing only a small number of columns (variables, i.e., cycles)
- Repeatedly add columns until an optimal solution to this partially formulated LP is an optimal solution to the original LP

s.t. $\sum_{c \in C^{\prime}: v \in c} x_{c} \leq 1, \forall v \in V$ $x_{c} \in[0,1], \forall c \in C^{\prime}$

Column Generation

- $C^{\prime}=\{124,256\}$, solution?
- Add 347 to C^{\prime}

How to determine which cycle to add to C^{\prime} ?

- $C^{\prime}=\{124,256,347\}$, solution?

Pricing Problem for Kidney Exchange

- Goal: Find a new cycle to be added (for cycle-based formulation)
- Rely on dual LP to get the dual value of each vertex
- Ideally a feasible path with highest total dual value
- Depth-first search with several pruning rules

$$
\begin{array}{cc}
\max _{x} \sum_{c \in C^{\prime}} x_{c} w_{c} & \begin{array}{c}
\text { Dual LP } \\
\min _{y} \sum_{v \in V} y_{v} \\
\text { s.t. } \sum_{c \in C^{\prime}: v \in c} x_{c} \leq 1, \forall v \in V \\
x_{c} \in[0,1], \forall c \in C^{\prime}
\end{array} \\
\begin{array}{cc}
\text { s.t. } \sum_{v \in c} y_{v} \geq w_{c}, \forall c \in C^{\prime} \\
y_{v} \geq 0
\end{array} \\
\text { Optimal dual solution }\left\{y_{v}^{*}\right\}
\end{array}
$$

Pricing Problem for Kidney Exchange

- Goal: Find a new cycle to be added (for cycle-based formulation)
- Rely on dual LP to get the dual value of each vertex
- Ideally a feasible path with highest total dual value
- Depth-first search with several pruning rules

Q:Which cycle should be added?

BnB + Column Generation for Cyble-Based ILP Formulation

- Use BnB to solve the ILP
- When solving a LP relaxation, use column generation
- I. Start with a small number of cycles (variables)

2. Solve the LP with the subset of cycles

- 3. Check if a cycle can be added to the subset to improve the objective function (the most). If so, add it to the subset and go back to 2

$$
\begin{gathered}
\max _{x} \sum_{c} x_{c} w_{c} \\
\text { s.t. } \sum_{c: v \in c} x_{c} \leq 1, \forall v \in V \\
x_{c} \in\{0,1\}, \forall c
\end{gathered}
$$

Similar ideas can be applied to edge-based ILP

Outline

- Basic Kidney Exchange Problem
- Branch and Bound
- Column Generation
- Discussion for Extensions (optional)

Discussion for Extensions

- Real-world settings can be much more complex than what the basic model describes

Deal with Uncertainty

- Uncertainty always exists in practice
- Which part of the basic model can be extended to consider uncertainty in real-world settings?

Deal with Uncertainty

- How do we deal with uncertainty?
- Probabilistic
, Compute expectation
- Non-probabilistic
- Maximin Criterion (Wald's Maximin Model)
- Minimax Regret Criterion

A Simple Example

- Uncertainty in the existence of some edges
- Maximin: Maximize the worst case utility (Conservative)

$$
\max _{x \in X} \min _{u \in U(x)} f(x, u)
$$

- Solution under the maximin paradigm:

> Ignore the uncertain edges

Minimax regret

- Minimize maximum regret (Less conservative)

$$
\min _{x \in X} \max _{u \in U(x)} f\left(x^{*}(u), u\right)-f(x, u)
$$

- Let $\tilde{f}(x, u)=f(x, u) \forall x, u \in U(x)$ and $\tilde{f}(x, u)=$ $M, \forall x, u \notin U(x)$

$$
\begin{gathered}
\min _{x \in X} v \\
\text { s.t. } v \geq \tilde{f}\left(x^{*}(u), u\right)-\tilde{f}(x, u), \forall u \in U
\end{gathered}
$$

May still use column generation!

Discussion for Extensions

- What Al methods and paradigms have we learned so far? Can we leverage them to deal with problems in kidney exchange?
- LP, MILP
- Linear Regression, Kernel Regression, Decision Trees, Neural Networks
- Multi-armed Bandit, Monte Carlo Tree Search, Markov Decision Process, Reinforcement Learning
, Game theory, Stackelberg security games, Human Behavior Modeling

Reference and Related Work

- Clearing algorithms for barter exchange markets: Enabling nationwide kidney exchanges
- FutureMatch: Combining Human Value Judgments and Machine Learning to Match in Dynamic Environments [Extended version]
- Position-Indexed Formulations for Kidney Exchange [Extended version]
- Optimizing Kidney Exchange with Transplant Chains: Theory and Reality

Linear Program Duality

- Dual problem of an LP: also a linear program
- Each dual variable corresponds to a constraint in primal LP

Primal LP	Dual LP
$\max _{x} c^{T} x$	$\min _{y} b^{T} y$
s.t. $A x \leq b$	s.t. $A^{T} y=c$
	$y \geq 0$
$x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, m<n$	$y \in \mathbb{R}^{m}$

Linear Program Duality

- Strong duality holds (if feasible and bounded)
- Primal and dual have the same optimal objective value
- The dual of the dual of a problem is itself

$$
\begin{array}{cc}
\text { Primal LP } & \text { Dual LP } \\
\max _{x} c^{T} x & \min _{y} b^{T} y \\
\text { s.t. } A x \leq b & \text { s.t. } A^{T} y=c \\
& y \geq 0 \\
\hline x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, m<n & y \in \mathbb{R}^{m}
\end{array}
$$

Weak duality: $c^{T} x^{*} \leq b^{T} y^{*}$
Strong duality: $c^{T} x^{*}=b^{T} y^{*}$

Linear Program Duality

- Prove weak duality: $c^{T} x^{*} \leq b^{T} y^{*}$

$$
\begin{array}{cc}
\text { Primal LP } & \text { Dual LP } \\
\max _{x} c^{T} x & \min _{y} b^{T} y \\
\text { s.t. } A x \leq b & \text { s.t. } A^{T} y=c \\
& y \geq 0 \\
x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, m<n & y \in \mathbb{R}^{m}
\end{array}
$$

Linear Program Duality

- Prove weak duality: $c^{T} x^{*} \leq b^{T} y^{*}$

$$
\begin{aligned}
& c^{T} x^{*}=\left(A^{T} y^{*}\right)^{T} x^{*}=y^{* T} A x^{*}=y^{* T}\left(A x^{*}\right) \\
& \leq y^{* T} b
\end{aligned}
$$

Primal LP
$\max c^{T} x$ x
s.t. $A x \leq b$

Dual LP
$\min _{y} b^{T} y$
s.t. $A^{T} y=c$
$y \geq 0$
$y \in \mathbb{R}^{m}$

Write the Dual of an LP

Maximize	Minimize
ith constraint \leq	ith variable ≥ 0
ith constraint \geq	ith variable ≤ 0
ith constraint $=$	ith variable unrestricted
jth variable ≥ 0	jth constraint \geq
jth variable ≤ 0	jth constraint \leq
jth variable unrestricted	jth constraint $=$

Linear Program Duality

- Let LP-I denote the original LP, LP-2 denote the dual of LP-I, and LP-3 denote the dual of LP-2. Then LP-I and LP-3 are the same (or can be converted to each other with variable substitution)

$$
\begin{gathered}
\substack{\text { Lp-I } \\
\min _{x} c^{T} x \\
\text { s.t. } A x=b \\
x \geq 0} \\
\max b^{T} y \\
\text { s.t. } A^{T} y \leq c
\end{gathered} \begin{gathered}
\text { Lp-2 } \\
y=y^{+}-y^{-}
\end{gathered} \begin{gathered}
\text { Lp-2 (Standard form) } \\
\min _{y^{+}, y^{-}, z} b^{T} y^{+}-b^{T} y^{-} \\
\text {s.t. } A^{T} y^{+}-A^{T} y^{-}+z=c \\
y^{+}, y^{-}, z \geq 0
\end{gathered}
$$

Proof of strong duality theorem

- Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then exactly one of the following two statements is true
। I. There exists an $x \in \mathbb{R}^{n}$ such that $A x=b$ and $x \geq 0$
II. There exists a $y \in \mathbb{R}^{m}$ such that $A^{T} y \geq 0$ and $b^{T} y<0$

Proof:

- If (I) is true, i.e., $A x=b$ holds for some x. If $A^{T} y \geq 0$ for some y, then $b^{T} y=(A x)^{T} y=x^{T}\left(A^{T} y\right) \geq x^{T} \mathbf{0}=0$. So (I)(II) cannot both be true.
- If (I) is false, then define $C=\left\{q \in \mathbb{R}^{m}: \exists x \geq 0, A x=q\right\}$. We know $b \neq C$. Notice that C is convex. From separating hyperplane theorem, we know for some $y \in \mathbb{R}^{m} \backslash \mathbf{0}$ s.t. $q^{T} y \geq 0 \forall q \in C$ and $b^{T} y<0$. Then we can show that for this $y, A^{T} y \geq 0$. If not, i.e., if $A^{T} y<0$, then choose any $q \in$ C, and choose any $x \geq 0$ such that $A x=q$, we have $0 \leq q^{T} y=$ $(A x)^{T} y=x^{T} A^{T} y=x^{T}\left(A^{T} y\right)<x^{T} \mathbf{0}=0$. Contradiction. So this y satisfies $A^{T} y \geq 0$ and $b^{T} y<0$. Therefore (II) is true.
- So exactly one of (I) and (II) is true

Proof of strong duality theorem

- Second variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then system $A x \leq b$ has a solution if and only if $\lambda^{T} b \geq 0$ holds for all λ that satisfies $\lambda \geq 0$ and $\lambda^{T} A=0$
- Proof:
- If $A x \leq b$ has a solution, denote the solution as x^{*}. If $\lambda \geq 0$ and $\lambda^{T} A=0$, then $\lambda^{T} b \geq \lambda^{T}\left(A x^{*}\right)=\left(\lambda^{T} A\right) x^{*}=0$
- If $A x \leq b$ does not have a solution, then $A x^{+}-A x^{-}+z=$ $b, x^{+}, x^{-}, z \geq 0$ does not have a solution (otherwise you can easily construct a solution for $A x \leq b$). By Farkas' lemma, there exists a λ such that $[A-A I]^{T} \lambda \geq 0$ and $b^{T} \lambda<0$. Then for this λ, we know $A^{T} \lambda=0$ (and therefore $\lambda^{T} A=0$) and $\lambda \geq 0$

Proof of strong duality theorem

- Suppose the primal has an optimal solution x^{*}, leading to optimal value $\mathrm{f}^{*}=c^{T} x^{*},\left(y^{*}, g^{*}=b^{T} y^{*}\right)$ is the optimal solution and the optimal value of the dual, and $f^{*}>q^{*}$ Then for any $\epsilon_{c}>0$, we know that $\nexists y, b^{T} y \geq g^{*}+$ $\epsilon, A^{T} y \leq c$, i.e., $\left[\begin{array}{c}A^{T} \\ -b^{T}\end{array}\right] y \leq\left[\begin{array}{c}c \\ -g^{*}-\epsilon\end{array}\right]$ does not have a solution. Based on the variant of the Farkas' lemma, there exists a $\lambda \in \mathbb{R}^{n+1}$ satisfying $\lambda \geq 0$, $\lambda^{T}\left[\begin{array}{c}A^{T} \\ -b^{T}\end{array}\right]=0$, and $\lambda^{T}\left[\begin{array}{c}c \\ -g^{*}-\epsilon\end{array}\right]<0$. Write this λ as $\lambda=\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right]$ where $\lambda_{1} \epsilon$ $\mathbb{R}^{n}, \bar{\lambda}_{2}^{b^{T} \in \mathbb{R}, \lambda_{1} \geq 0, \lambda_{2} \geq 0 .}$
- If $\lambda_{2}=0$, then $\lambda_{1}^{T} A^{T}=0, \lambda_{1}^{T} c<0, \lambda_{1} \geq 0$.According to the variant of the Farkas' lemma, $A^{T} y \leq c$ should not have a solution. But y^{*} is a solution of the dual and therefore $A^{T} y^{*} \leq c$. Contradiction.
- If $\lambda_{2}>0$, then we can scale every the parameters in the problem so that $\lambda_{2}=1$. Then $\lambda_{1}^{T} A^{T}=b^{T}$ and $\lambda_{1}^{T} c<g^{*}+\epsilon$. Therefore λ_{1} is a feasible solution of the primal and has a corresponding objective value lower than $g^{*}+\epsilon$. Since primal is minimization, we have $f^{*} \leq c^{T} \lambda_{1}<g^{*}+\epsilon$. According to weak duality theorem, $f^{*} \geq g^{*}$. So $g^{*} \leq f^{*}<g^{*}+\epsilon$ for any $\epsilon>0$. Then the only possibility is $f^{*}=g^{*}$.

Column Generation for Linear Programs

- Column generation is an approach to solving largescale linear programs with a massive number of variables
- Recall:

$$
\begin{gathered}
\max _{x} c^{T} x \\
\text { s.t. } A x \leq b
\end{gathered}
$$

| $c \in \mathbb{R}^{n}$

- $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Optimal solution is at a vertex
- Simplex algorithm: Iteratively move to a neighboring vertex

Column Generation for Linear Programs

- Consider LP in the following form (all LPs can be converted into this form)

$$
\begin{gathered}
\max _{x} c^{T} x \\
\text { s.t. } A x \leq b \\
x \geq 0
\end{gathered}
$$

If a variable, say z is unrestricted in the original problem, then introduce two non-negative variables z_{+}and z_{-} substitute Z with $z_{+}-z_{-}$
। $c \in \mathbb{R}^{n}$
। $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

Column Generation for Linear Programs

- If $n \gg m$, many variables will be zero at the optimal solution

> Why? The optimal solution is at a vertex.A vertex in the feasible space (which is a subset of \mathbb{R}^{n}) is determined by n equalities. We can get at most m equalities from boundary hyperplanes of constraints in $A x \leq b$. So we need to use at least $n-m$ boundary lines of the inequality constraints $x \geq 0$, which means those corresponding variables are 0 .

- What if $n \ll m$? Then the dual problem would have a lot of zero-valued variables. We can then try to solve the dual problem using column generation, which is called constraint generation.

Column Generation for Linear Programs

- Column generation: Iteratively solve a main problem and a subproblem
- Main problem: The original LP but with a subset of variables (assuming all other variables are zero)
- Subproblem: Identify a new variable to be added to the subset of variables considered by the main problem

```
Main Problem
    \mp@subsup{m}{\mp@subsup{x}{i}{}:i\inL}{}\mp@subsup{c}{}{T}x
    s.t. Ax \leqb
    x \geq0
```


Subproblem
Find a new variable x_{i} and add i to L

Column Generation for Linear Programs

- What is the goal of the subprolem?
- Add a variable that can increase the objective function the most

$$
\begin{gathered}
\max _{x} c^{T} x \\
\text { s.t. } A x \leq b \\
\quad x \geq 0
\end{gathered}
$$

Dual LP

$$
\min _{y} b^{T} y
$$

$$
\text { s.t. } A^{T} y \geq c
$$

$$
y \geq 0
$$

- Assume the optimal solution with only a set L of variables considered is x_{L}^{*}, the corresponding optimal dual solution is y_{L}^{*}
- The new variable chosen, say x_{i}, should have the highest "reduced cost", calculated as $c_{i}-A_{i}^{T} y_{L}^{*}$ where A_{i} is the i th column of A, i.e., coefficients w.r.t. to x_{i}. If the highest reduced cost is non-positive, then no variable will be added, x_{L}^{*} is the optimal solution of the original problem with all variables

Reduced Cost Explained

- Reduced cost is an important quantity in LP
- First, convert the LP into "canonical form" by adding slack variables

$$
x_{n+1}, \ldots, x_{n+m}
$$

$$
\max c^{T} x
$$

$$
{ }^{x}
$$

$$
\text { s.t. } A x \leq b
$$

$$
x \geq 0
$$

$$
\begin{aligned}
& \max _{x_{1}, \ldots, x_{n+m}} c_{1} x_{1}+\cdots+c_{n} x_{n} \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}+x_{n+1}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}+x_{n+2}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}+x_{n+m}=b_{m} \\
& x_{i} \geq 0, \forall i \in\{1 . . n+m\}
\end{aligned}
$$

- Assume we choose a set of "basic variables" from $\{1 . . n+m\}$ of size m, called J. Set all variables not in J as 0 . The constraints will then be simplified to constraints w.r.t. basic variables only. Then solve this linear system with the m basic variables and m constraints. The solution corresponds to a vertex of the feasible region of the LP in the canonical form shown above. Subselect x_{1}, \ldots, x_{n} from the solution + the zero-valued non-basic variables lead to a vertex of the feasible region of the original LP.

Reduced Cost Explained

- Formally, denote the new coefficient matrix with slack variables as $\tilde{A}=\left[\begin{array}{ll}A & I\end{array}\right], \tilde{c}=\left[\begin{array}{l}C \\ \mathbf{0}\end{array}\right]$
- Let \tilde{A}_{J} be the submatrix of \tilde{A} containing only columns corresponding to variables in J
- Then $x_{J}=\tilde{A}_{J}^{-1} b$ and $x_{j}=0, \forall j \notin J$ represents a vertex of the feasible region of the following LP

$$
\begin{array}{cc}
\max _{x_{1}, \ldots, x_{n+m}} c_{1} x_{1}+\cdots+c_{n} x_{n} \\
\text { s.t. } a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}+x_{n+1}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}+x_{n+2}=b_{2} \\
\cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}+x_{n+m}=b_{m} & \max _{x \in \mathbb{R} n+m} \tilde{c}^{T} x \\
x_{i} \geq 0, \forall i \in\{1 . . n+m\}
\end{array}
$$

Reduced Cost Explained

- Given $x=\left(x_{1}, \ldots x_{n+m}\right)$ with $x_{J}=\tilde{A}_{J}^{-1} b$ and $x_{j}=0, \forall j \notin J$
- Consider adjusting x to x^{\prime} by setting $x_{j}^{\prime}=\alpha>0$ for some $j \notin$ J while ensuring $x_{i}^{\prime}=0 \forall i \notin J, i \neq j$ and $\tilde{A} x^{\prime}=b, x^{\prime} \geq 0$, i.e., introducing one variable to the current basic variable set
- All $x_{i}, i \in J$ has to change accordingly
- Denote $x_{J}^{\prime}=x_{J}+\alpha d_{J}$, then

$$
\begin{gathered}
\tilde{A} x^{\prime}=b \Rightarrow \tilde{A}_{J}\left(x_{J}+\alpha d_{J}\right)+\alpha \tilde{A}_{j}=b \\
\Rightarrow \tilde{A}_{J}\left(\tilde{A}_{J}^{-1} b+\alpha d_{J}\right)+\alpha \tilde{A}_{j}=b \\
\Rightarrow \alpha \tilde{A}_{J} d_{J}+\alpha \tilde{A}_{j}=0 \\
\Rightarrow d_{J}=-\tilde{A}_{J}^{-1} \tilde{A}_{j}
\end{gathered}
$$

Reduced Cost Explained

$$
\begin{array}{cc}
\max _{x} c^{T} x & \min _{y} b^{T} y \\
\text { s.t. } A x \leq b & \text { s.t. } A^{T} y \geq c \\
x \geq 0 & y \geq 0
\end{array}
$$

- If $j \in[1 . . n]$, the new objective value is

$$
f\left(x^{\prime}\right)=\tilde{c}^{T} x^{\prime}=\tilde{c}^{T} x+\alpha\left(\tilde{c}_{j}+\tilde{c}_{J}^{T} d_{J}\right)
$$

- Rewritten as $f\left(x^{\prime}\right)=\tilde{c}^{T} x+\alpha \bar{c}_{j}$ where

$$
\bar{c}_{j}=\tilde{c}_{j}+\tilde{c}_{J}^{T} d_{J}=\tilde{c}_{j}-\tilde{c}_{J}^{T} \tilde{A}_{J}^{-1} \tilde{A}_{j}
$$

Therefore $f\left(x^{\prime}\right)>\tilde{c}^{T} x$ if $\bar{c}_{j}>0$
For $j \in\{1 . . n\}, \bar{c}_{j}$ is called reduced cost

Reduced Cost Explained

$$
\begin{aligned}
& f\left(x^{\prime}\right)=\tilde{c}^{T} x+\alpha \bar{c}_{j} \\
& \bar{c}_{j}=\tilde{c}_{j}-\tilde{c}_{J}^{T} \tilde{A}_{J}^{-1} \tilde{A}_{j}
\end{aligned}
$$

- If \bar{c}_{j} is non-positive for all non-basic variables of a vertex corresponding to basic variable set J, then the vertex is the optimal solution
- If \bar{c}_{j} is positive for some j, then moving from x to x^{\prime} can lead to a higher objective value, the higher the value of $\overline{c_{j}}$, the higher the increase rate. The Simplex algorithm move towards the neighboring vertex with the highest \bar{c}_{j}

Reduced Cost Explained

- If $x^{*} \in \mathbb{R}^{n+m}$ is the optimal solution of the primal LP in canonical form, and it corresponds to a set of basis J, then consider the corresponding optimal dual solution $y^{*} \in$ \mathbb{R}^{m}
According to complementary slackness, if x_{j} is in J, then the corresponding dual constraint is tight, i.e., $A_{j}^{T} y^{*}=c_{j}$ if $j \in\{1 . . n\}$ and $y_{j-n}^{*}=0$ if $j \in\{n+1, \ldots, n+m\}$
- Together with the fact $\tilde{A}=\left[\begin{array}{ll}A & I\end{array}\right], \tilde{c}=\left[\begin{array}{l}C \\ 0\end{array}\right]$, we have $\tilde{A}_{J}^{T} y^{*}=\tilde{c}_{J}$
- We can conclude: at optimal solution, $\bar{c}_{j}=\tilde{c}_{j}-\tilde{c}_{J}^{T} \tilde{A}_{J}^{-1} \tilde{A}_{j}$ can be rewritten as $\bar{c}_{j}=c_{j}-A_{j}^{T} y^{*}$ for $j \in\{1 . . n\}$

Reduced Cost Explained

- Assume that after you solved an LP and get x^{*} and the corresponding y^{*}, you are asked to add a new variable x_{j} to the LP with coefficient c_{j} and matrix column A_{j}
- x^{*} still corresponds to a vertex in the augmented LP, but it may not be the optimal solution
- We need to check if we introduce j to the basis, whether the objective value will increase
- This can be done by directly checking the reduced cost

Subproblem and Reduced Cost

- Now consider the column generation process.
- It can be viewed as add variables one by one.
- Again, whether and how much a new variable x_{j} will improve the objective value depends on its reduced cost, computed as $c_{i}-A_{i}^{T} y_{L}^{*}$ where y_{L}^{*} is the optimal dual solution (without slack variables) before x_{j} is added

