
Reminder

 PRA6 due 4/16

 HW6 due 4/25

 Course project presentation 4/23 and 4/25

 Come to OH for discussions!

4/9/2024Fei Fang1

Artificial Intelligence Methods for Social Good

Lecture 23

Case Study: Optimizing Kidney Exchange

4/9/20242

17-537 (9-unit) and 17-737 (12-unit)

Instructor: Fei Fang

feifang@cmu.edu

mailto:feifang@cmu.edu

Recall: 0-1 Knapsack

 0-1 Knapsack

 Maximum weight = 10

 How to select items to maximize total value?

4/9/2024Fei Fang3

Items 1 2 3 4 5

Weight 5 4 2 6 7

Value 4 3 6 9 5

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Recall: LP Relaxation

 LP relaxation of an MILP or BIP is the LP with the

same linear constraints

4/9/2024Fei Fang4

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ ℤ, 𝑖 ∈ 𝐽𝑧

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ

MILP
LP Relaxation

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ [0,1]

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ 0,1 , ∀𝑖

BIP LP Relaxation

Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion

4/9/2024Fei Fang5

Learning Objectives

 For the kidney exchange problems, briefly describe

 Significance/Motivation

 Task being tackled, i.e., what is being

predicted/estimated/prescribed

 Data usage, i.e., what data is used and how it is processed

 Domain-specific considerations

 AI method used

 Evaluation process and criteria

 Describe Branch and Bound and Column Generation

methods

4/9/2024Fei Fang6

Kidney Exchange

4/9/2024Fei Fang7

Kidney Exchange Model

 Given directed graph 𝐺 = (𝑉, 𝐸), where each node
represent a patient-donor pair, and an edge 〈𝑢, 𝑣〉 means
donor of node 𝑢 can give one kidney to patient of node 𝑣

 The clearing problem: Find a set of disjoint cycles with
length ≤ 𝐿 so as to maximize some objective function,
e.g., total number of patients matched

4/9/2024Fei Fang8

1

2

4

6

3

5

7

8

What would be a reasonable 𝐿?

Poll 1: Kidney Exchange

 Given the graph below, what is the maximum number

of patients that can get a kidney through kidney

exchange assuming the length of each cycle should be

less than or equal to 3?

 A: 3

 B: 6

 C: 7

 D: 8

 E: None of the above

 F: I don’t know

4/9/2024Fei Fang9

1

2

4

6

3

5

7

8

Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang10

1

2

4

6

3

5

7

8

Hint: enumerate all the cycles

Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang11

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐

𝑥𝑐𝑙𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Hint: enumerate all the cycles

Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang12

1

2

4

6

3

5

7

8
Max cardinality case is just when

all weight = 1

𝑤𝑒

Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang13

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

𝑤𝑐: total weight of the cycle 𝑐

Max cardinality case is just when

all weight = 1

𝑤𝑒

Cycle-Based ILP Formulation

 Limitation: Can only solve for a problem with a few

hundred patients

4/9/202414

How to improve scalability?

Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang15

1

2

4

6

3

5

7

8

Hint: Use flow conservation constraints

𝑤𝑒

Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang16

1

2

4

6

3

5

7

8

Hint: Use flow conservation constraints

max
𝑦

෍

𝑒

𝑦𝑒𝑤𝑒

s.t. σ𝑒∈𝑣→ 𝑦𝑒 − σ𝑒∈→𝑣 𝑦𝑒 = 0, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝑣→

𝑦𝑒 ≤ 1, ∀𝑣 ∈ 𝑉

𝑦𝑒 ∈ 0,1 , ∀𝑒

෍

𝑒∈𝑃

𝑦𝑒 ≤ 𝐿 − 1, ∀𝑃 ∈

{Acyclic paths with length 𝐿}

𝑤𝑒

𝑦𝑒: whether edge 𝑒 will be selected

Complexity of the Clearing Problem

 When 𝐿 = 2, the clearing problem can be solved in

polynomial time

 Satisfy total unimodulaity, can solve the LP relaxation directly

 The clearing problem with 2 < 𝐿 < +∞ is NP-

complete

4/9/2024Fei Fang17

max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Complexity of the Clearing Problem

 When 𝐿 = +∞, i.e., no length constraint, the clearing

problem can be solved in polynomial time (maximum

weight bipartite matching, Hungarian Maximum

Matching Algorithm)

4/9/2024Fei Fang18

1

2

4

3

5

How would max length make a difference?

 Significantly better solutions can be obtained by just

allowing cycles of length 3 instead of allowing 2-cycles

only. In practice, a cycle length cap of 3 is typically

used.

4/9/2024Fei Fang19

Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to

donate a kidney to any needy candidate in the pool

without a candidate patient?

4/9/2024Fei Fang20

1

2

4

6

3

5

7

8

9
Altruist donor

Does not scale when 𝐿 is too large.

Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to

donate a kidney to any needy candidate in the pool

without a candidate patient?

4/9/2024Fei Fang21

1

2

4

6

3

5

7

8

9
Altruist donor

Weight=0

Does not scale when 𝐿 is too large.

How would max length make a difference?

4/9/2024Fei Fang22

With UNOS data

How would max length make a difference?

4/9/2024Fei Fang23

With UNOS data

Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion

4/9/2024Fei Fang24

Improve the scalability

Recall: Depth-First Search for BIP

4/9/2024Fei Fang25

𝑎

𝑏 𝑐

𝑥1 = 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

Cannot expand to this gray node because the constraint is violated

𝑥4 = 0 1 0 1 0 1 0 1

𝑥1 = 0

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Recall: Depth-First Search for BIP

 Can we prune the branches and make search more

efficient?

4/9/2024Fei Fang26

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

𝑥4 = 0 1 0 1 0 1 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Estimate upper bound!

Upper Bound (if maximization): LP Relaxation

4/9/2024Fei Fang27

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Upper Bound (if maximization): LP Relaxation

4/9/2024Fei Fang28

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ 0,1 , 𝑖 = 1. . 5

𝑥1 = 0
𝑥2 = 1

Branch and Bound for BIP

 Branch and Bound overview (assuming maximization)

 Heuristic search

 Use optimal objective value of LP relaxation (upper bound)

as the heuristic function

 Always expand the node with the best upper bound first

(poly-time computable)

 Terminate early when best upper bound of remaining nodes

is worse than the current best solution

4/9/2024Fei Fang29

Branch and Bound for BIP: Example

4/9/2024Fei Fang30

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Branch and Bound for BIP

 Solve-LP(𝒞) returns (𝑓, 𝑥), the optimal objective

value and the optimal solution for the LP relaxation

of the original problem with additional constraints 𝒞

4/9/2024Fei Fang31

Algorithm: Branch and Bound for BIP

Input: A BIP with 𝑥𝑖 , 𝑖 = 1. . 𝑛 as variables

Initialize 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 with Solve-LP({})
Repeat

 Remove a node with best 𝑓 from 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡: (𝑓, 𝑥, 𝒞)
 If 𝑥 are all integer valued, return (𝑓, 𝑥)

 Choose a variable 𝑥𝑖 that is not integer valued and add two nodes

Solve-LP(𝒞 ∪ {𝑥𝑖 = 0}) and Solve-LP(𝒞 ∪ {𝑥𝑖 = 1}) to 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡
Until 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is empty

Get a feasible integer solution ො𝑥 based on 𝑥, update current best (ҧ𝑓, ҧ𝑥)
If ҧ𝑓 ≤ 𝑓 + 𝜖, return (ҧ𝑓, ҧ𝑥)

Branch and Bound for MILP

 For MILP
 BnB: For each integer variable, branching a node by

considering 𝑥𝑖 ≤ ෥𝑥𝑖 and 𝑥𝑖 ≥ ෥𝑥𝑖 where ෥𝑥𝑖 is a non-
integer value

 Standard BnB has already been integrated into
existing (M)ILP solvers in Cplex and Gurobi

 Extension: Branch and Cut
 On top of branch and bound, use cutting planes (which are

essentially linear constraints) to separate current non-
integer solution and integer solutions

4/9/2024Fei Fang32

Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion

4/9/2024Fei Fang33

Column Generation

 In kidney exchange: too many edges and cycles

 Even solving the relaxed LPs is challenging

 Too many variables (cycle-based formulation) or constraints

(edge-based formulation)

4/9/2024Fei Fang34

Column Generation for Solving LPs

 Start with a restricted LP containing only a small

number of columns (variables, i.e., cycles)

 Repeatedly add columns until an optimal solution to

this partially formulated LP is an optimal solution to

the original LP

4/9/2024Fei Fang35

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

Column Generation

 𝐶′ = {124, 256}, solution?

 Add 347 to 𝐶′

 𝐶′ = 124, 256,347 , solution?

4/9/2024Fei Fang36

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

How to determine which

cycle to add to 𝐶′?
(Pricing Problem)

Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules

4/9/2024Fei Fang37

max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

min
𝑦

෍

𝑣∈𝑉

𝑦𝑣

s.t. σ𝑣∈𝑐 𝑦𝑣 ≥ 𝑤𝑐, ∀𝑐 ∈ 𝐶′
𝑦𝑣 ≥ 0

Dual LP

Optimal dual solution {𝑦𝑣
∗}

Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules

4/9/2024Fei Fang38

1

2

4

6

3

5

7

8
2

𝑦1
∗ = −1

−6

−4

3

−2

−5

2
Q: Which cycle should be

added?

BnB + Column Generation for Cyble-Based ILP Formulation

 Use BnB to solve the ILP

 When solving a LP relaxation, use column generation
 1. Start with a small number of cycles (variables)

 2. Solve the LP with the subset of cycles

 3. Check if a cycle can be added to the subset to improve the
objective function (the most). If so, add it to the subset and go
back to 2

4/9/2024Fei Fang39

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Similar ideas can be applied to edge-based ILP

Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Discussion for Extensions (optional)

4/9/2024Fei Fang40

Discussion for Extensions

 Real-world settings can be much more complex than

what the basic model describes

4/9/2024Fei Fang41

Deal with Uncertainty

 Uncertainty always exists in practice

 Which part of the basic model can be extended to

consider uncertainty in real-world settings?

4/9/2024Fei Fang42

Deal with Uncertainty

 How do we deal with uncertainty?

 Probabilistic

 Compute expectation

 Non-probabilistic

 Maximin Criterion (Wald's Maximin Model)

 Minimax Regret Criterion

4/9/2024Fei Fang43

A Simple Example

 Uncertainty in the existence of some edges

 Maximin: Maximize the worst case utility

(Conservative)

 Solution under the maximin paradigm:

4/9/2024Fei Fang44

max
𝑥∈𝑋

min
u∈𝑈(𝑥)

𝑓(𝑥, 𝑢)

Ignore the uncertain edges

Minimax regret

 Minimize maximum regret (Less conservative)

 Let ሚ𝑓 𝑥, 𝑢 = 𝑓 𝑥, 𝑢 ∀𝑥, 𝑢 ∈ 𝑈(𝑥) and ሚ𝑓 𝑥, 𝑢 =
𝑀, ∀𝑥, 𝑢 ∉ 𝑈(𝑥)

4/9/2024Fei Fang45

min
𝑥∈𝑋

max
u∈𝑈(𝑥)

𝑓 𝑥∗ 𝑢 , 𝑢 − 𝑓(𝑥, 𝑢)

min
𝑥∈𝑋

𝑣

s.t. 𝑣 ≥ ሚ𝑓 𝑥∗ 𝑢 , 𝑢 − ሚ𝑓(𝑥, 𝑢), ∀𝑢 ∈ 𝑈

May still use column generation!

Discussion for Extensions

 What AI methods and paradigms have we learned so

far? Can we leverage them to deal with problems in

kidney exchange?

 LP, MILP

 Linear Regression, Kernel Regression, Decision Trees, Neural

Networks

 Multi-armed Bandit, Monte Carlo Tree Search, Markov

Decision Process, Reinforcement Learning

 Game theory, Stackelberg security games, Human Behavior

Modeling

4/9/2024Fei Fang46

Reference and Related Work

 Clearing algorithms for barter exchange markets:

Enabling nationwide kidney exchanges

 FutureMatch: Combining Human Value Judgments and

Machine Learning to Match in Dynamic

Environments [Extended version]

 Position-Indexed Formulations for Kidney Exchange

[Extended version]

 Optimizing Kidney Exchange with Transplant Chains:

Theory and Reality

4/9/2024Fei Fang47

https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15%20with%20appendix.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016_EC_CAMERA_READY.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016PlusExtraMaterial.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf

Linear Program Duality

 Dual problem of an LP: also a linear program

 Each dual variable corresponds to a constraint in primal LP

4/9/2024Fei Fang48

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Linear Program Duality

 Strong duality holds (if feasible and bounded)

 Primal and dual have the same optimal objective value

 The dual of the dual of a problem is itself

4/9/2024Fei Fang49

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

Strong duality: 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗

Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

4/9/2024Fei Fang50

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

4/9/2024Fei Fang51

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

𝑐𝑇𝑥∗ = 𝐴𝑇𝑦∗ 𝑇
𝑥∗ = 𝑦∗𝑇𝐴𝑥∗ = 𝑦∗𝑇 𝐴𝑥∗

≤ 𝑦∗𝑇𝑏

Write the Dual of an LP

4/9/2024Fei Fang52

Maximize Minimize

ith constraint ≤ ith variable ≥ 0

ith constraint ≥ ith variable ≤ 0

ith constraint = ith variable unrestricted

jth variable ≥ 0 jth constraint ≥

jth variable ≤ 0 jth constraint ≤

jth variable unrestricted jth constraint =

Linear Program Duality

 Let LP-1 denote the original LP, LP-2 denote the dual of LP-1,
and LP-3 denote the dual of LP-2. Then LP-1 and LP-3 are the
same (or can be converted to each other with variable
substitution)

4/9/2024Fei Fang53

min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

max
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≤ 𝑐

Lp-1 Lp-2

min
𝑦+,𝑦−,𝑧

𝑏𝑇𝑦+ − 𝑏𝑇𝑦−

s.t. 𝐴𝑇𝑦+ − 𝐴𝑇𝑦− + 𝑧 = 𝑐
𝑦+, 𝑦−, 𝑧 ≥ 0

Lp-2 (Standard form)

max
𝑤

𝑐𝑇𝑤

s.t. 𝐴𝑤 ≤ 𝑏𝑇

𝐴𝑤 ≤ −𝑏𝑇

𝑤 ≤ 0

LP-3

𝑦 = 𝑦+ − 𝑦−

dual

𝑥 = 𝑤

Proof of strong duality theorem

 Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. Then exactly
one of the following two statements is true
 I. There exists an 𝑥 ∈ ℝ𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0

 II. There exists a 𝑦 ∈ ℝ𝑚 such that 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0

 Proof:

 If (I) is true, i.e., 𝐴𝑥 = 𝑏 holds for some 𝑥. If 𝐴𝑇𝑦 ≥ 0 for some 𝑦, then
𝑏𝑇𝑦 = 𝐴𝑥 𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 ≥ 𝑥𝑇𝟎 = 0. So (I)(II) cannot both be true.

 If (I) is false, then define 𝐶 = {𝑞 ∈ ℝ𝑚: ∃𝑥 ≥ 0, 𝐴𝑥 = 𝑞}. We know 𝑏 ≠ 𝐶.
Notice that 𝐶 is convex. From separating hyperplane theorem, we know
for some 𝑦 ∈ ℝ𝑚\𝟎 s.t. 𝑞𝑇𝑦 ≥ 0 ∀𝑞 ∈ 𝐶 and 𝑏𝑇𝑦 < 0. Then we can
show that for this 𝑦, 𝐴𝑇𝑦 ≥ 0. If not, i.e., if 𝐴𝑇𝑦 < 0, then choose any 𝑞 ∈
𝐶, and choose any 𝑥 ≥ 0 such that 𝐴𝑥 = 𝑞, we have 0 ≤ 𝑞𝑇𝑦 =
𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 < 𝑥𝑇𝟎 = 0. Contradiction. So this 𝑦

satisfies 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0. Therefore (II) is true.

 So exactly one of (I) and (II) is true

4/9/2024Fei Fang54

Proof of strong duality theorem

 Second variant of Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and

𝑏 ∈ ℝ𝑚. Then system 𝐴𝑥 ≤ 𝑏 has a solution if and

only if 𝜆𝑇𝑏 ≥ 0 holds for all 𝜆 that satisfies 𝜆 ≥ 0 and
𝜆𝑇𝐴 = 0
 Proof:

 If 𝐴𝑥 ≤ 𝑏 has a solution, denote the solution as 𝑥∗. If 𝜆 ≥ 0 and
𝜆𝑇𝐴 = 0, then 𝜆𝑇𝑏 ≥ 𝜆𝑇 𝐴𝑥∗ = 𝜆𝑇𝐴 𝑥∗ = 0

 If 𝐴𝑥 ≤ 𝑏 does not have a solution, then 𝐴𝑥+ − 𝐴𝑥− + 𝑧 =
𝑏, 𝑥+, 𝑥−, 𝑧 ≥ 0 does not have a solution (otherwise you can easily

construct a solution for 𝐴𝑥 ≤ 𝑏). By Farkas’ lemma, there exists a 𝜆

such that [𝐴 − 𝐴 𝐼]𝑇𝜆 ≥ 0 and 𝑏𝑇𝜆 < 0. Then for this 𝜆, we know

𝐴𝑇𝜆 = 0 (and therefore 𝜆𝑇𝐴 = 0) and 𝜆 ≥ 0

4/9/2024Fei Fang55

Proof of strong duality theorem

 Suppose the primal has an optimal solution 𝑥∗, leading to optimal value
f ∗ = 𝑐𝑇𝑥∗, (𝑦∗, 𝑔∗ = 𝑏𝑇𝑦∗) is the optimal solution and the optimal value of
the dual, and 𝑓∗ > 𝑔∗. Then for any 𝜖 > 0, we know that ∄𝑦, 𝑏𝑇𝑦 ≥ 𝑔∗ +

𝜖, 𝐴𝑇𝑦 ≤ 𝑐, i.e.,
𝐴𝑇

−𝑏𝑇 𝑦 ≤
𝑐

−𝑔∗ − 𝜖 does not have a solution. Based on

the variant of the Farkas’ lemma, there exists a 𝜆 ∈ ℝ𝑛+1 satisfying 𝜆 ≥ 0,

𝜆𝑇 𝐴𝑇

−𝑏𝑇 = 0, and 𝜆𝑇
𝑐

−𝑔∗ − 𝜖 < 0. Write this 𝜆 as 𝜆 =
𝜆1

𝜆2
 where 𝜆1 ∈

ℝ𝑛, 𝜆2 ∈ ℝ, 𝜆1 ≥ 0, 𝜆2 ≥ 0.

 If 𝜆2 = 0, then 𝜆1
𝑇𝐴𝑇 = 0, 𝜆1

𝑇𝑐 < 0, 𝜆1 ≥ 0. According to the variant of the
Farkas’ lemma, 𝐴𝑇𝑦 ≤ 𝑐 should not have a solution. But 𝑦∗ is a solution of
the dual and therefore 𝐴𝑇𝑦∗ ≤ 𝑐. Contradiction.

 If 𝜆2 > 0, then we can scale every the parameters in the problem so that
𝜆2 = 1. Then 𝜆1

𝑇𝐴𝑇 = 𝑏𝑇 and 𝜆1
𝑇𝑐 < 𝑔∗ + 𝜖. Therefore 𝜆1 is a feasible

solution of the primal and has a corresponding objective value lower than
𝑔∗ + 𝜖. Since primal is minimization, we have 𝑓∗ ≤ 𝑐𝑇𝜆1 < 𝑔∗ + 𝜖.
According to weak duality theorem, 𝑓∗ ≥ 𝑔∗. So 𝑔∗ ≤ 𝑓∗ < 𝑔∗ + 𝜖 for any
𝜖 > 0. Then the only possibility is 𝑓∗ = 𝑔∗.

4/9/2024Fei Fang56

Column Generation for Linear Programs

 Column generation is an approach to solving large-
scale linear programs with a massive number of
variables

 Recall:

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

 Optimal solution is at a vertex

 Simplex algorithm: Iteratively move to a neighboring vertex

4/9/202457

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Column Generation for Linear Programs

 Consider LP in the following form (all LPs can be

converted into this form)

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

4/9/202458

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

If a variable , say 𝑧 is unrestricted in

the original problem, then introduce

two non-negative variables 𝑧+ and 𝑧−

substitute 𝑧 with 𝑧+ − 𝑧−

Column Generation for Linear Programs

 If 𝑛 ≫ 𝑚, many variables will be zero at the optimal

solution

 What if 𝑛 ≪ 𝑚? Then the dual problem would have a

lot of zero-valued variables. We can then try to solve

the dual problem using column generation, which is

called constraint generation.

4/9/202459

Why? The optimal solution is at a vertex. A vertex in the feasible space (which is

a subset of ℝ𝑛) is determined by 𝑛 equalities. We can get at most 𝑚 equalities

from boundary hyperplanes of constraints in 𝐴𝑥 ≤ 𝑏. So we need to use at least

𝑛 − 𝑚 boundary lines of the inequality constraints 𝑥 ≥ 0, which means those

corresponding variables are 0.

Column Generation for Linear Programs

 Column generation: Iteratively solve a main problem

and a subproblem

 Main problem: The original LP but with a subset of

variables (assuming all other variables are zero)

 Subproblem: Identify a new variable to be added to

the subset of variables considered by the main

problem

4/9/202460

max
𝑥𝑖:𝑖∈𝐿

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Main Problem Subproblem

Find a new variable 𝑥𝑖

and add 𝑖 to 𝐿

Column Generation for Linear Programs

 What is the goal of the subprolem?

 Add a variable that can increase the objective function the
most

 Assume the optimal solution with only a set 𝐿 of variables
considered is 𝑥𝐿

∗, the corresponding optimal dual solution is 𝑦𝐿
∗

 The new variable chosen, say 𝑥𝑖, should have the highest
“reduced cost”, calculated as 𝑐𝑖 − 𝐴𝑖

𝑇𝑦𝐿
∗ where 𝐴𝑖 is the 𝑖th

column of 𝐴, i.e., coefficients w.r.t. to 𝑥𝑖. If the highest reduced
cost is non-positive, then no variable will be added, 𝑥𝐿

∗ is the
optimal solution of the original problem with all variables

4/9/202461

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Dual LP

Reduced Cost Explained

 Reduced cost is an important quantity in LP

 First, convert the LP into “canonical form” by adding slack variables
𝑥𝑛+1, … , 𝑥𝑛+𝑚

 Assume we choose a set of “basic variables” from {1. . 𝑛 + 𝑚} of
size 𝑚, called 𝐽. Set all variables not in 𝐽 as 0. The constraints will
then be simplified to constraints w.r.t. basic variables only. Then solve
this linear system with the 𝑚 basic variables and 𝑚 constraints. The
solution corresponds to a vertex of the feasible region of the LP in
the canonical form shown above. Subselect 𝑥1, … , 𝑥𝑛 from the
solution + the zero-valued non-basic variables lead to a vertex of
the feasible region of the original LP.

4/9/202462

max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Reduced Cost Explained

 Formally, denote the new coefficient matrix with slack

variables as ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

 Let ሚ𝐴𝐽 be the submatrix of ሚ𝐴 containing only columns

corresponding to variables in 𝐽

 Then 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽 represents a

vertex of the feasible region of the following LP

4/9/202463

max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥∈ℝ𝑛+𝑚

ǁ𝑐𝑇𝑥

s.t. ሚ𝐴𝑥 = 𝑏

𝑥 ≥ 0

Reduced Cost Explained

 Given 𝑥 = (𝑥1, … 𝑥𝑛+𝑚) with 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽

 Consider adjusting 𝑥 to 𝑥′ by setting 𝑥𝑗
′ = 𝛼 > 0 for some 𝑗 ∉

𝐽 while ensuring 𝑥𝑖
′ = 0 ∀𝑖 ∉ 𝐽, 𝑖 ≠ 𝑗 and ሚ𝐴𝑥′ = 𝑏, 𝑥′ ≥ 0, i.e.,

introducing one variable to the current basic variable set

 All 𝑥𝑖 , 𝑖 ∈ 𝐽 has to change accordingly

 Denote 𝑥𝐽
′ = 𝑥𝐽 + 𝛼𝑑𝐽, then

ሚ𝐴𝑥′ = 𝑏 ⇒ ሚ𝐴𝐽(𝑥𝐽 + 𝛼𝑑𝐽) + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ ሚ𝐴𝐽
ሚ𝐴𝐽

−1𝑏 + 𝛼𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ 𝛼 ሚ𝐴𝐽𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 0

⇒ 𝑑𝐽 = − ሚ𝐴𝐽
−1 ሚ𝐴𝑗

4/9/2024Fei Fang64

Reduced Cost Explained

 If 𝑗 ∈ 1. . 𝑛 , the new objective value is

𝑓 𝑥′ = ǁ𝑐𝑇𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼(ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽)

 Rewritten as 𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗 where

ҧ𝑐𝑗 = ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽 = ǁ𝑐𝑗 − ǁ𝑐𝐽

𝑇 ሚ𝐴𝐽
−1 ሚ𝐴𝑗

Therefore 𝑓 𝑥′ > ǁ𝑐𝑇𝑥 if ҧ𝑐𝑗 > 0

4/9/2024Fei Fang65

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

For 𝑗 ∈ {1. . 𝑛}, ҧ𝑐𝑗 is called reduced cost

Reduced Cost Explained

 If ҧ𝑐𝑗 is non-positive for all non-basic variables of a vertex

corresponding to basic variable set 𝐽, then the vertex is

the optimal solution

 If ҧ𝑐𝑗 is positive for some 𝑗, then moving from 𝑥 to 𝑥′ can

lead to a higher objective value, the higher the value of ҧ𝑐𝑗 ,

the higher the increase rate. The Simplex algorithm move

towards the neighboring vertex with the highest ҧ𝑐𝑗

4/9/202466

𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗

ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗

Reduced Cost Explained

 If 𝑥∗ ∈ ℝ𝑛+𝑚 is the optimal solution of the primal LP in
canonical form, and it corresponds to a set of basis 𝐽, then
consider the corresponding optimal dual solution 𝑦∗ ∈
ℝ𝑚

 According to complementary slackness, if 𝑥𝑗 is in 𝐽, then the

corresponding dual constraint is tight, i.e., 𝐴𝑗
𝑇𝑦∗ = 𝑐𝑗 if 𝑗 ∈ {1. . 𝑛}

and 𝑦𝑗−𝑛
∗ = 0 if 𝑗 ∈ {𝑛 + 1, … , 𝑛 + 𝑚}

 Together with the fact ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

, we have

ሚ𝐴𝐽
𝑇𝑦∗ = ǁ𝑐𝐽

 We can conclude: at optimal solution, ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗

can be rewritten as ҧ𝑐𝑗 = 𝑐𝑗 − 𝐴𝑗
𝑇𝑦∗ for 𝑗 ∈ {1. . 𝑛}

4/9/202467

Reduced Cost Explained

 Assume that after you solved an LP and get 𝑥∗ and

the corresponding 𝑦∗, you are asked to add a new

variable 𝑥𝑗 to the LP with coefficient 𝑐𝑗 and matrix

column 𝐴𝑗

 𝑥∗ still corresponds to a vertex in the augmented LP,

but it may not be the optimal solution

 We need to check if we introduce 𝑗 to the basis,

whether the objective value will increase

 This can be done by directly checking the reduced

cost

4/9/202468

Subproblem and Reduced Cost

 Now consider the column generation process.

 It can be viewed as add variables one by one.

 Again, whether and how much a new variable 𝑥𝑗 will

improve the objective value depends on its reduced

cost, computed as 𝑐𝑖 − 𝐴𝑖
𝑇𝑦𝐿

∗ where 𝑦𝐿
∗ is the optimal

dual solution (without slack variables) before 𝑥𝑗 is

added

4/9/202469

	Slide 1: Reminder
	Slide 2: Artificial Intelligence Methods for Social Good Lecture 23 Case Study: Optimizing Kidney Exchange
	Slide 3: Recall: 0-1 Knapsack
	Slide 4: Recall: LP Relaxation
	Slide 5: Outline
	Slide 6: Learning Objectives
	Slide 7: Kidney Exchange
	Slide 8: Kidney Exchange Model
	Slide 9: Poll 1: Kidney Exchange
	Slide 10: Cycle-Based ILP Formulation
	Slide 11: Cycle-Based ILP Formulation
	Slide 12: Cycle-Based ILP Formulation
	Slide 13: Cycle-Based ILP Formulation
	Slide 14: Cycle-Based ILP Formulation
	Slide 15: Edge-Based ILP Formulation
	Slide 16: Edge-Based ILP Formulation
	Slide 17: Complexity of the Clearing Problem
	Slide 18: Complexity of the Clearing Problem
	Slide 19: How would max length make a difference?
	Slide 20: Kidney Exchange with Chains
	Slide 21: Kidney Exchange with Chains
	Slide 22: How would max length make a difference?
	Slide 23: How would max length make a difference?
	Slide 24: Outline
	Slide 25: Recall: Depth-First Search for BIP
	Slide 26: Recall: Depth-First Search for BIP
	Slide 27: Upper Bound (if maximization): LP Relaxation
	Slide 28: Upper Bound (if maximization): LP Relaxation
	Slide 29: Branch and Bound for BIP
	Slide 30: Branch and Bound for BIP: Example
	Slide 31: Branch and Bound for BIP
	Slide 32: Branch and Bound for MILP
	Slide 33: Outline
	Slide 34: Column Generation
	Slide 35: Column Generation for Solving LPs
	Slide 36: Column Generation
	Slide 37: Pricing Problem for Kidney Exchange
	Slide 38: Pricing Problem for Kidney Exchange
	Slide 39: BnB + Column Generation for Cyble-Based ILP Formulation
	Slide 40: Outline
	Slide 41: Discussion for Extensions
	Slide 42: Deal with Uncertainty
	Slide 43: Deal with Uncertainty
	Slide 44: A Simple Example
	Slide 45: Minimax regret
	Slide 46: Discussion for Extensions
	Slide 47: Reference and Related Work
	Slide 48: Linear Program Duality
	Slide 49: Linear Program Duality
	Slide 50: Linear Program Duality
	Slide 51: Linear Program Duality
	Slide 52: Write the Dual of an LP
	Slide 53: Linear Program Duality
	Slide 54: Proof of strong duality theorem
	Slide 55: Proof of strong duality theorem
	Slide 56: Proof of strong duality theorem
	Slide 57: Column Generation for Linear Programs
	Slide 58: Column Generation for Linear Programs
	Slide 59: Column Generation for Linear Programs
	Slide 60: Column Generation for Linear Programs
	Slide 61: Column Generation for Linear Programs
	Slide 62: Reduced Cost Explained
	Slide 63: Reduced Cost Explained
	Slide 64: Reduced Cost Explained
	Slide 65: Reduced Cost Explained
	Slide 66: Reduced Cost Explained
	Slide 67: Reduced Cost Explained
	Slide 68: Reduced Cost Explained
	Slide 69: Subproblem and Reduced Cost

