Reminder

» PRA6 due 4/16

» HW6 due 4/25

» Course project presentation 4/23 and 4/25

Come to OH for discussions!
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Recall: 0-1 Knapsack

» 0-1 Knapsack
Maximum weight = 10

How to select items to maximize total value?

Weight 5 4 2 6 7
Value 4 3 6

max 4x; + 3x, + 6x3 + 9x, + 5x¢
s.t.5x; +4x, + 2x3 + 6x4 + 7x5 < 10
Xi (S {0,1}
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Recall: LP Relaxation

» LP relaxation of an MILP or BIP is the LP with the
same linear constraints

LP Relaxation

MILP
T T
maxc’' x ‘ maxc' x
X X
st.Gx < h st.Gx < h
Xi S Z,l (S ]Z
BIP LP Relaxation
T
maxc- x - ' max clx
st.Gx < h stgz}x<h
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Outline

» Basic Kidney Exchange Problem

» Branch and Bound

» Column Generation

» Extension and Discussion

5 Fei Fang
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Learning Obijectives

» For the kidney exchange problems, briefly describe
Significance/Motivation

Task being tackled, i.e., what is being
predicted/estimated/prescribed

Data usage, i.e., what data is used and how it is processed
Domain-specific considerations

Al method used

Evaluation process and criteria

» Describe Branch and Bound and Column Generation
methods

6 Fei Fang 4/9/2024



Kidney Exchange
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Kidney Exchange Model

» Given directed graph G = (V, E'), where each node
represent a patient-donor pair, and an edge (u, V) means
donor of node u can give one kidney to patient of node v

» The clearing problem: Find a set of disjoint cycles with
length < L so as to maximize some objective function,
e.g., total number of patients matched

What would be a reasonable L?
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Poll |: Kidney Exchange

» Given the graph below, what is the maximum number
of patients that can get a kidney through kidney

exchange assuming the length of each cycle should be
less than or equal to 3?

A:3
B:6
C.7
D:8

E: None of the above

F:1 don’t know

9 Fei Fang 4/9/2024



Cycle-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the number of patients matched

» Decision variables?
» Constraints? Hint: enumerate all the cycles
» Obijective function?
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Cycle-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the number of patients matched

» Decision variables?
» Constraints? Hint: enumerate all the cycles

max E Xl
X

C
St DevecXe S L,LVVEV
x. €{0,1},Vc

» Objective function?
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Cycle-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the total weight if each edge has a weight!

» Decision variables?
» Constraints!?
» Obijective function?

Max cardinality case is just when
all weight = 1

4/9/2024



Cycle-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the total weight if each edge has a weight!

» Decision variables?
» Constraints!?
» Obijective function?

w,: total weight of the cycle ¢

max z X W,
X

C
St DcpecXe K 1L,VVEV

x. €{0,1},Vc

Max cardinality case is just when
all weight = 1

4/9/2024



Cycle-Based ILP Formulation

» Limitation: Can only solve for a problem with a few
hundred patients How to improve scalability?
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Edge-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the total weight

» Decision variables? Hint: Use flow conservation constraints
» Constraints!?
» Objective function?

4/9/2024




Edge-Based ILP Formulation

» Find a set of disjoint cycles with length < L so as to
maximize the total weight

» Decision variables? Hint: Use flow conservation constraints
. Ye: Whether edge e will be selected
» Constraints?
o o o m X
» Objective function? N Z YeWe
e

S-t-ZeEv—> Ve — Zee—m Ye =0,VvEV
z Ve < 1L,VVEV

eev—-

ye € {011}; ve

z Yo <L —1,YP €
eep {Acyclic paths with length L}
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Complexity of the Clearing Problem

max Z X W,
X

C
St DcpecXe S LLVVEV

x. € {0,1},Vc

» When L = 2, the clearing problem can be solved in
polynomial time

Satisfy total unimodulaity, can solve the LP relaxation directly

» The clearing problem with 2 < L < 40 is NP-
complete

|7 Fei Fang 4/9/2024



Complexity of the Clearing Problem

» When L = +00,i.e., no length constraint, the clearing
problem can be solved in polynomial time (maximum
weight bipartite matching, Hungarian Maximum

Matching Algorithm)

Agents
vl v2 v3 v4 v5

vl V2 v3 v4 v
[tems

Fei Fang 4/9/2024



How would max length make a difference!?

» Significantly better solutions can be obtained by just
allowing cycles of length 3 instead of allowing 2-cycles
only. In practice, a cycle length cap of 3 is typically
used.

19 Fei Fang 4/9/2024



Kidney Exchange with Chains

» What if an altruist donor enters the pool offering to
donate a kidney to any needy candidate in the pool
without a candidate patient?

Altruist donor

Does not scale when L is too large.

4/9/2024



Kidney Exchange with Chains

» What if an altruist donor enters the pool offering to
donate a kidney to any needy candidate in the pool
without a candidate patient?

Altruist donor

Does not scale when L is too large.
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How would max length make a difference!?

22
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How would max length make a difference!?

Optimizing for Maximum Weight
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Outline

» Basic Kidney Exchange Problem

» Branch and Bound —

— Improve the scalability

» Column Generation —

» Extension and Discussion

24 Fei Fang 4/9/2024



Recall: Depth-First Search for BIP

max 4x; + 3x, + 6x3 + 9x4 + 5x5
s.t.5x; +4x, + 2x3 + 6x, + 7x5 < 10
Xi (S {0,1}

x1=0

x1=0 1

x; =0 x1 =1 a x2=0
e x2:O 1
xg_(/

x4—0\£9’g(’)/\£91-

Cannot expand to this gray node because the constraint is violated \ /
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Recall: Depth-First Search for BIP

» Can we prune the branches and make search more
efficient?

max 4x; + 3x, + 6x3 + 9x4 + 5x5
s.t.5x; +4x, + 2x3 + 6x, + 7x5 < 10
Xi (S {0,1}

Estimate upper bound!

26 Fei Fang 4/9/2024



Upper Bound (if maximization): LP Relaxation

max 4x; + 3x, + 6x3 + 9x4 + 5x5
s.t.5x; +4x, + 2x3 + 6x, + 7x5 < 10
Xi (S {0,1}

27 Fei Fang 4/9/2024



Upper Bound (if maximization): LP Relaxation

max 4x; + 3x, + 6x3 + 9x4 + 5x5
s.t.5x; +4x, + 2x3 + 6x, + 7x5 < 10
X; € [0,1],l =1..5
x1 =0
X, =1

28 Fei Fang 4/9/2024



Branch and Bound for BIP

» Branch and Bound overview (assuming maximization)

29

Heuristic search

Use optimal objective value of LP relaxation (upper bound)
as the heuristic function

Always expand the node with the best upper bound first
(poly-time computable)

Terminate early when best upper bound of remaining nodes
is worse than the current best solution

Fei Fang 4/9/2024



Branch and Bound for BIP: Example

max 4x; + 3x, + 6x3 + 9x, + 5x5 @/o/ ,0) |UB= 6.6
s.t.5x; +4x, + 2x3 + 6x4 + 7x5 < 10 -
x; € {0,1 = )
: € 10,1} y Z)mna/{
lue.y o0 | UB= it
N——
= 1b43 (B=0 ho need 4o &« e

wﬁﬂ\ Jo. L0610
KX% \\ runed

,Ol\o

I

U% =[S V\,,_ié
&@f\lg-—wop%w’.
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Branch and Bound for BIP

» Solve-LP(C) returns (f, x), the optimal objective
value and the optimal solution for the LP relaxation
of the original problem with additional constraints C

Algorithm: Branch and Bound for BIP
Input: A BIP with x;,i = 1..7n as variables

Initialize nodelist with Solve-LP({})
Repeat
Remove a node with best f from nodelist: (f,x,C)
If x are all integer valued, return (f, x)
Get a feasible integer solution £ based on x, update current best (f, X)
If f < f + €, return (f, %)
Choose a variable x; that is not integer valued and add two nodes
Solve-LP(C U {x; = 0}) and Solve-LP(C U {x; = 1}) to nodelist
Until nodelist is empty

31 Fei Fang 4/9/2024



Branch and Bound for MILP

» For MILP

BnB: For each integer variable, branching a node by
considering x; < |X;] and x; = [X;] where X; is a non-
integer value

» Standard BnB has already been integrated into
existing (M)ILP solvers in Cplex and Gurobi

» Extension: Branch and Cut

On top of branch and bound, use cutting planes (which are
essentially linear constraints) to separate current non-
integer solution and integer solutions

32 Fei Fang 4/9/2024



Outline

» Basic Kidney Exchange Problem

» Branch and Bound

» Column Generation

» Extension and Discussion

33 Fei Fang
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Column Generation

» In kidney exchange: too many edges and cycles

34

Even solving the relaxed LPs is challenging

Edges Length 2 & 3 cycles
Patients Mean Max Mean Max
100 2.38¢e+3 | 2.79e+3 || 2.76e+3 | 5.90e+3
500 6.19e+4 | 6.68e+4 || 3.96e+5 | 5.27e+5
1000 2.44e+5 | 2.68e+5 || 3.31e4+6 | 4.57e+6
2000 9.60e+5 | 1.02e+6 || 2.50e+7 | 3.26e+7
3000 2.19e+6 | 2.28e+6 || 8.70e+7 | 9.64e+7
4000 3.86e+6 | 3.97e+6 || 1.94e+8 | 2.14e+8
5000 5.67e+6 | 6.33e+6 || 3.60e+8 | 4.59e+8
6000 8.80e+6 | 8.95e+6
7000 1.19e+7 | 1.21e+7
8000 1.56e+7 | 1.59e+7
9000 1.98e+7 | 2.02e+7
10000 2.44e+7T | 2.51e+7

Fei Fang

Too many variables (cycle-based formulation) or constraints
(edge-based formulation)

4/9/2024



Column Generation for Solving LPs

» Start with a restricted LP containing only a small
number of columns (variables, i.e., cycles)

» Repeatedly add columns until an optimal solution to
this partially formulated LP is an optimal solution to
the original LP

max 2 X W,
X

cec’

x. € 0,1],Vc € C’

4/9/2024




Column Generation

» C' = {124,256}, solution!?
» Add 347 to C' ~« How to determine which

cycle to add to C"?

» C' = {124,256,347}, solution? (Pricing Problem)

max E XcWe
X

cec’

x. € 0,1],Vc € C’

4/9/2024



Pricing Problem for Kidney Exchange

» Goal: Find a new cycle to be added (for cycle-based
formulation)
Rely on dual LP to get the dual value of each vertex
|deally a feasible path with highest total dual value
Depth-first search with several pruning rules

Dual LP
max z XcWe ' min z Vu
* cec’ g vEV
St Yec!pecXe S LVVEV S.t. pec Yy = W, Ve € C'
x. €0,1],vc e’ Yy, =0

Optimal dual solution {y,}

37 Fei Fang 4/9/2024



Pricing Problem for Kidney Exchange

» Goal: Find a new cycle to be added (for cycle-based
formulation)
Rely on dual LP to get the dual value of each vertex
|deally a feasible path with highest total dual value
Depth-first search with several pruning rules

Q:Which cycle should be
added?

4/9/2024




BnB + Column Generation for Cyble-Based ILP Formulation

» Use BnB to solve the ILP

» When solving a LP relaxation, use column generation
|. Start with a small number of cycles (variables)
2. Solve the LP with the subset of cycles

3. Check if a cycle can be added to the subset to improve the

objective function (the most). If so, add it to the subset and go
back to 2

max 2 X W,
X

C
St DcpecXe S L,V EV

x. €{0,1},Vc

Similar ideas can be applied to edge-based ILP

39 Fei Fang 4/9/2024



Outline

» Basic Kidney Exchange Problem
» Branch and Bound
» Column Generation

» Discussion for Extensions (optional)
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Discussion for Extensions

» Real-world settings can be much more complex than
what the basic model describes

41 Fei Fang 4/9/2024



Deal with Uncertainty

» Uncertainty always exists in practice

» Which part of the basic model can be extended to
consider uncertainty in real-world settings?

42 Fei Fang 4/9/2024



Deal with Uncertainty

» How do we deal with uncertainty?
Probabilistic

Compute expectation

Non-probabilistic
Maximin Criterion (Wald's Maximin Model)

Minimax Regret Criterion

43 Fei Fang
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A Simple Example

» Uncertainty in the existence of some edges

» Maximin: Maximize the worst case utility
(Conservative)

max min X, U
xXeX uEU(x)f( ’ )

» Solution under the maximin paradigm:

lgnore the uncertain edges

44 Fei Fang
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Minimax regret

» Minimize maximum regret (Less conservative)

min max. fOru),w) — fx,w)

» Let f(x,u) = f(x,u) Vx,u € U(x) and f(x,u) =
M,Vx,u & U(x)

min v
XEX

st.v > flx*(w),u) — f(x,u),Yu e U

May still use column generation!

45 Fei Fang 4/9/2024



Discussion for Extensions

» What Al methods and paradigms have we learned so
far! Can we leverage them to deal with problems in
kidney exchange!?

46

LP, MILP

Linear Regression, Kernel Regression, Decision Trees, Neural
Networks

Multi-armed Bandit, Monte Carlo Tree Search, Markov
Decision Process, Reinforcement Learning

Game theory, Stackelberg security games, Human Behavior
Modeling

Fei Fang 4/9/2024



Reference and Related Work

» Clearing algorithms for barter exchange markets:
Enabling nationwide kidney exchanges

» FutureMatch: Combining Human Value Judgments and
Machine Learning to Match in Dynamic
Environments [Extended version]

» Position-Indexed Formulations for Kidney Exchange
[Extended version]

» Optimizing Kidney Exchange with Transplant Chains:
Theory and Reality

47 Fei Fang 4/9/2024


https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15%20with%20appendix.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016_EC_CAMERA_READY.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016PlusExtraMaterial.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf

Linear Program Duality

» Dual problem of an LP: also a linear program

Each dual variable corresponds to a constraint in primal LP

Primal LP Dual LP
max cl x min b’y
X y
st.Ax < b s.t. ATy = ¢
y=0

x ERYAER™ " m<n y € R™

48 Fei Fang 4/9/2024



Linear Program Duality

» Strong duality holds (if feasible and bounded)

Primal and dual have the same optimal objective value

» The dual of the dual of a problem is itself

Primal LP Dual LP
max cl x min b’y
X y
st.Ax < b s.t. ATy = ¢
y=0

x ERYAER™ " m<n y € R™

Weak duality: cTx* < bTy*
Strong duality: cTx* = bTy

*

49 Fei Fang 4/9/2024



Linear Program Duality

» Prove weak duality: c'x* < bTy*

50

Primal LP

max c! x
X

st.Ax < b

xERMLAER™ " m<n

Fei Fang

Dual LP

min b’y
s.t. ATy = ¢
y=0
y € R™

4/9/2024



Linear Program Duality

ES

» Prove weak duality: c'x* < bTy

CTx* — (ATy*)Tx* — y*TAx* — y*T(Ax*)

<y7Th
Primal LP Dual LP
max cl x min b’y
X y
st.Ax < b s.t. ATy = ¢

y=0
xERMAER™ " m<n y € R™

51 Fei Fang 4/9/2024



Write the Dual of an LP

Maximize Minimize

ith constraint < ith variable = 0

ith constraint = ith variable £ 0

ith constraint = ith variable unrestricted
jth variable 2 0 jth constraint 2

jth variable < 0 jth constraint <

jth variable unrestricted jth constraint =

52 Fei Fang 4/9/2024



Linear Program Duality

» Let LP-| denote the original LP, LP-2 denote the dual of LP-1,
and LP-3 denote the dual of LP-2.Then LP-1 and LP-3 are the
same (or can be converted to each other with variable

substitution)
Lp-| Lp-2 Lp-2 (Standard form)
min cx max 'Y y=y*—y"  min pTy* — pTy~
CoytyTz
st.Ax = b st. ATy < ¢ st ATyt — ATy~ +z=c
x 20 vty ,z=0
dual
X =Ww LP-3
maxc’w
w
s.t. Aw < b7
Aw < —bT
w<0

53 Fei Fang 4/9/2024



Proof of strong duality theorem

» Farkas’ lemma:Let A € R™*™ and b € R™.Then exactly
one of the following two statements is true

|. There exists an x € R" suchthat Ax = band x > 0
. There exists a y € R™ such that ATy > 0and b7y < 0

Proof:

If (I) is true, i.e., Ax = b holds for some x.If ATy > 0 for some v, then
bTy = (Ax)Ty = xT(ATy) = xT0 = 0.So (I)(ll) cannot both be true.

If (I) is false, then define C = {q € R™:3x > 0, Ax = q}.We know b # C.
Notice that C is convex. From separating hyperplane theorem, we know
for some y € R™\0s.t.q’y > 0Vq € C and by < 0.Then we can
show that for this y, ATy > 0.If not,i.e., if ATy < 0, then choose any g €
C,and choose any x > 0 such that Ax = g,we have 0 < qTy =

(Ax)Ty = xTATy = xT(ATy) < xT0 = 0. Contradiction. So this y
satisfies ATy > 0 and bTy < 0.Therefore (ll) is true.

So exactly one of (I) and (Il ) is true

54 Fei Fang 4/9/2024



Proof of strong duality theorem

» Second variant of Farkas’ lemma: Let A € R™*" and

b € R™.Then system Ax < b has a solution if and
only if ATbh > 0 holds for all A that satisfies A > 0 and
ATA=0

Proof:

If Ax < b has a solution, denote the solution as x*.If A = 0 and
ATA = 0,then ATh = AT (Ax*) = (ATA)x* = 0

If Ax < b does not have a solution, then Ax™ — Ax™ + z =
b,x*,x~,z = 0 does not have a solution (otherwise you can easily
construct a solution for Ax < b). By Farkas’ lemma, there exists a 4
such that [A — A I]1"A2 > 0 and b7 1 < 0.Then for this A, we know
AT2 = 0 (and therefore A4 = 0) and 1 = 0

55 Fei Fang 4/9/2024



Proof of strong duality theorem

» Suppose the primal has an optimal solution x™, leading to optimal value
f*=cTx* (y*, g* = bTy*) is the optimal solution and the optimal value of
the dual,and f* > g*.Then for any € > 0, we know that Ay, bTy > g* +

e, ATy <c,ie, - T] y < _g*c_ ¢| does not have a solution. Based on
the val;iant of the Ipar<as’ lemma, there exists a A € R™*?! satisfying 1 > 0,
AT [ A T] = 0,and AT [_g*c_ e] < 0.Write this A as 1 = [/11
ROACER A, = 0,1, > 0. ?
» If A, = 0,then /17;TAT = 0,4 c < 0,1; = 0.According to the variant of the

Farkas’ lemma, A" y < ¢ should not have a solution. But y* is a solution of
the dual and therefore ATy* < c. Contradiction.

» If A, > 0, then we can scale every the parameters in the problem so that
Ay, = 1.Then ATAT = bT and Al c < g* + e.Therefore A, is a feasible
solution of the primal and has a corresponding objective value lower than
g* + €.Since primal is minimization,we have f* < ¢T1; < g* + €.
According to weak duality theorem, f* > g*.So g* < f* < g* + € for any
€ > 0.Then the only possibility is f* = g~.

where 1, €

56 Fei Fang 4/9/2024



Column Generation for Linear Programs

» Column generation is an approach to solving large-
scale linear programs with a massive number of
variables

» Recall:

max c! x
X

st.Ax <D
c € R"

A € R™™ peR™
Optimal solution is at a vertex
Simplex algorithm: Iteratively move to a neighboring vertex

57 4/9/2024



Column Generation for Linear Programs

» Consider LP in the following form (all LPs can be
converted into this form)

T
man c X If a variable , say z is unrestricted in
the original problem, then introduce
st.Ax < b S’ proo7em,
two non-negative variables z, and z_
xz=0 substitute z with z, — z_

c € R"
A€ R™ heR™

58 4/9/2024



Column Generation for Linear Programs

» If n >> m, many variables will be zero at the optimal
solution

Why? The optimal solution is at a vertex.A vertex in the feasible space (which is
a subset of R") is determined by n equalities.VWe can get at most m equalities
from boundary hyperplanes of constraints in Ax < b.So we need to use at least
n — m boundary lines of the inequality constraints x = 0, which means those
corresponding variables are 0.

» What if n < m? Then the dual problem would have a
lot of zero-valued variables. Ve can then try to solve
the dual problem using column generation, which is
called constraint generation.

59 4/9/2024



Column Generation for Linear Programs

» Column generation: Iteratively solve a main problem

and a subproblem

» Main problem: The original LP but with a subset of

variables (assuming all other variables are zero)

» Subproblem: Identify a new variable to be added to

the subset of variables considered by the main

problem

4 Main Problem N

max ¢’ x
Xi:l€EL

st.Ax < b

\_ x=0 .

60

—
—

Subproblem

~

Find a new variable x;

andaddi to L

&

J
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Column Generation for Linear Programs

» What is the goal of the subprolem?
» Add a variable that can increase the objective function the

most Dual LP
max c’ x min b’y
X y
st.Ax < b st. ATy > ¢
x =0 y=0

» Assume the optimal solution with only a set L of variables
considered is x;, the corresponding optimal dual solution is y;

» The new variable chosen, say x;, should have the highest
“reduced cost”, calculated as ¢; — A! y; where A4; is the ith
column of 4, i.e,, coefficients w.r.t. to x;. If the highest reduced
cost is non-positive, then no variable will be added, x; is the
optimal solution of the original problem with all variables

61 4/9/2024



Reduced Cost Explained

» Reduced cost is an important quantity in LP
» First, convert the LP into “canonical form” by adding slack variables

Xn+1s = Xn+m
max CcyxXq+ -+ Cphxy

T X1, Xn+m
maxc" x S.t.A11X1 + A1pXp + o+ QupXp + Xpyq = by
X
a21X1+a22x2+°"+a2 X +x 2 =b2
st. Ay < b EEEp n¥n + Fn
x =0 Am1X1 + ApaXy T+ AnXpy + Xpnpm = bm

x; =2 0,Vie{l..n+m}

» Assume we choose a set of “basic variables” from {1..n + m} of
size m, called J. Set all variables not in / as 0.The constraints will
then be simplified to constraints w.r.t. basic variables only. Then solve
this linear system with the m basic variables and m constraints. The
solution corresponds to a vertex of the feasible region of the LP in
the canonical form shown above. Subselect x4, ..., x,; from the
solution + the zero-valued non-basic variables lead to a vertex of

the feasible region of the original LP.
62 4/9/2024



Reduced Cost Explained

» Formally, denote the new coefficient matrix with slack
variables as A = [A [], & = [(C)]

» Let A] be the submatrix of A containing only columns
corresponding to variables in |
» Then Xy = Aflb and Xj = 0,Vj & ] represents a

vertex of the feasible region of the following LP

max Ccqxq;+ -+ Chxp
xl,....,xn+m

s.t. ai1X1 + A12X9 + -+ A1nXn + Xn+1 = bl xé?@%i(m 5TX
A1X1 + A%z + o+ AopXy + Xp42 = by “ st Ax = b

Am1X1 + AmaXe + -+ Qun Xy + Xpym = by x =0
x; =2 0,Vie{l..n+m}
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Reduced Cost Explained

» Given X = (X1, ... Xp4m) With X; = Aflb and x; = 0,V & ]
» Consider adjusting x to x' by setting x = a > 0 for some j &

J while ensuring x; =0Vi & J,i #j andAx =b,x'=0,ie,
introducing one variable to the current basic variable set

» All x;,i € | has to change accordingly
» Denote x; = x; + ad,, then

Ax' =b = A;(x;+ad)) +adj=b

= A](IW_ ad]) + aA7b/

= aA]d] + aA = 0
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maxc’ x min b”y

x y
st.Ax <b ¢ ATy > ¢

x=0 y=>0

Reduced Cost Explained
» If j € |1..n], the new objective value is
fx") =¢é"x" =¢"x + a(C + ¢ d))
» Rewritten as f(x') = éTx + acj where
x4 aTq _ x _ AT j—1j
Ci=C+Cdy=¢C —C A4
Therefore f(x') > é'x if c; >0

For j € {1..n}, ¢; is called reduced cost
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Reduced Cost Explained

N — ~T =~
fx') =¢"x+ ag
= — x _ AT i—1j
G = — A4

» If C; is non-positive for all non-basic variables of a vertex
corresponding to basic variable set J, then the vertex is
the optimal solution

» If ¢; is positive for some j, then moving from x to x' can
lead to a higher objective value, the higher the value of ¢;,

the higher the increase rate.The Simplex algorithm move
towards the neighboring vertex with the highest ¢;
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Reduced Cost Explained

» If x* € R™™ js the optimal solution of the primal LP in
canonical form, and it corresponds to a set of basis /, then
consider the corresponding optimal dual solution y* €
]:Rm

According to complementary slackness, if x; is in J, then the
corresponding dual constraint is tight, i.e., A]-Ty* =¢jifje{l..n}
andy;_, =0ifje{n+1,..,n+mj

~ . [C
» Together with thefact A = [A [I],¢ = [O],we have
.
41y =¢
» We can conclude: at optimal solution, ¢; = ¢; — 'C”]TAj_lAj
can be rewritten as ¢; = ¢j — A]Ty* for j € {1..n}
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Reduced Cost Explained

» Assume that after you solved an LP and get x™ and
the corresponding y*, you are asked to add a new
variable x; to the LP with coefficient ¢; and matrix

column Aj

» x* still corresponds to a vertex in the augmented LP,
but it may not be the optimal solution

» We need to check if we introduce j to the basis,
whether the objective value will increase

» This can be done by directly checking the reduced
cost
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Subproblem and Reduced Cost

» Now consider the column generation process.
» It can be viewed as add variables one by one.
» Again, whether and how much a new variable x; will

improve the objective value depends on its reduced

cost, computed as ¢; — A} y; where y; is the optimal
dual solution (without slack variables) before x; is

added
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