
Reminder

 PRA6 due 4/16

 HW6 due 4/25

 Course project presentation 4/23 and 4/25

 Come to OH for discussions!
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Artificial Intelligence Methods for Social Good

Lecture 23

Case Study: Optimizing Kidney Exchange

4/9/20242

17-537 (9-unit) and 17-737 (12-unit)

Instructor: Fei Fang

feifang@cmu.edu

mailto:feifang@cmu.edu


Recall: 0-1 Knapsack

 0-1 Knapsack

 Maximum weight = 10

 How to select items to maximize total value?
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Items 1 2 3 4 5

Weight 5 4 2 6 7

Value 4 3 6 9 5

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Recall: LP Relaxation

 LP relaxation of an MILP or BIP is the LP with the 

same linear constraints
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ ℤ, 𝑖 ∈ 𝐽𝑧

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ

MILP
LP Relaxation

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ [0,1]

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ 0,1 , ∀𝑖

BIP LP Relaxation



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Learning Objectives

 For the kidney exchange problems, briefly describe

 Significance/Motivation

 Task being tackled, i.e., what is being 

predicted/estimated/prescribed 

 Data usage, i.e., what data is used and how it is processed

 Domain-specific considerations

 AI method used

 Evaluation process and criteria

 Describe Branch and Bound and Column Generation 

methods
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Kidney Exchange
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Kidney Exchange Model

 Given directed graph 𝐺 = (𝑉, 𝐸), where each node 
represent a patient-donor pair, and an edge 〈𝑢, 𝑣〉 means 
donor of node 𝑢 can give one kidney to patient of node 𝑣

 The clearing problem: Find a set of disjoint cycles with 
length ≤ 𝐿 so as to maximize some objective function, 
e.g., total number of patients matched
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What would be a reasonable 𝐿?



Poll 1: Kidney Exchange

 Given the graph below, what is the maximum number 

of patients that can get a kidney through kidney 

exchange assuming the length of each cycle should be 

less than or equal to 3?

 A: 3

 B: 6

 C: 7

 D: 8

 E: None of the above

 F: I don’t know
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Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?
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Hint: enumerate all the cycles



Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?
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max
𝑥



𝑐

𝑥𝑐𝑙𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Hint: enumerate all the cycles



Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?
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all weight = 1

𝑤𝑒



Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?
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max
𝑥



𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

𝑤𝑐: total weight of the cycle 𝑐

Max cardinality case is just when 

all weight = 1

𝑤𝑒



Cycle-Based ILP Formulation

 Limitation: Can only solve for a problem with a few 

hundred patients

4/9/202414

How to improve scalability?



Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?
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Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?
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Hint: Use flow conservation constraints

max
𝑦



𝑒

𝑦𝑒𝑤𝑒

s.t. σ𝑒∈𝑣→ 𝑦𝑒 − σ𝑒∈→𝑣 𝑦𝑒 = 0, ∀𝑣 ∈ 𝑉



𝑒∈𝑣→

𝑦𝑒 ≤ 1, ∀𝑣 ∈ 𝑉

𝑦𝑒 ∈ 0,1 , ∀𝑒



𝑒∈𝑃

𝑦𝑒 ≤ 𝐿 − 1, ∀𝑃 ∈

{Acyclic paths with length 𝐿}

𝑤𝑒

𝑦𝑒: whether edge 𝑒 will be selected



Complexity of the Clearing Problem

 When 𝐿 = 2, the clearing problem can be solved in 

polynomial time

 Satisfy total unimodulaity, can solve the LP relaxation directly

 The clearing problem with 2 < 𝐿 < +∞ is NP-

complete
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max
𝑥



𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐



Complexity of the Clearing Problem

 When 𝐿 = +∞, i.e., no length constraint, the clearing 

problem can be solved in polynomial time (maximum 

weight bipartite matching, Hungarian Maximum 

Matching Algorithm)
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How would max length make a difference?

 Significantly better solutions can be obtained by just 

allowing cycles of length 3 instead of allowing 2-cycles 

only. In practice, a cycle length cap of 3 is typically 

used.
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Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to 

donate a kidney to any needy candidate in the pool 

without a candidate patient?
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Does not scale when 𝐿 is too large.



Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to 

donate a kidney to any needy candidate in the pool 

without a candidate patient?
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Weight=0

Does not scale when 𝐿 is too large.



How would max length make a difference?
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With UNOS data



How would max length make a difference?
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With UNOS data



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Improve the scalability



Recall: Depth-First Search for BIP
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𝑎

𝑏 𝑐

𝑥1 = 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

Cannot expand to this gray node because the constraint is violated

𝑥4 = 0 1 0 1 0 1 0 1

𝑥1 = 0

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Recall: Depth-First Search for BIP

 Can we prune the branches and make search more 

efficient?
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𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

𝑥4 = 0 1 0 1 0 1 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Estimate upper bound!



Upper Bound (if maximization): LP Relaxation

4/9/2024Fei Fang27

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Upper Bound (if maximization): LP Relaxation
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𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ 0,1 , 𝑖 = 1. . 5

𝑥1 = 0
𝑥2 = 1



Branch and Bound for BIP

 Branch and Bound overview (assuming maximization)

 Heuristic search

 Use optimal objective value of LP relaxation (upper bound) 

as the heuristic function

 Always expand the node with the best upper bound first 

(poly-time computable)

 Terminate early when best upper bound of remaining nodes 

is worse than the current best solution
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Branch and Bound for BIP: Example
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max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Branch and Bound for BIP

 Solve-LP(𝒞) returns (𝑓, 𝑥), the optimal objective 

value and the optimal solution for the LP relaxation 

of the original problem with additional constraints 𝒞
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Algorithm: Branch and Bound for BIP

Input: A BIP with 𝑥𝑖 , 𝑖 = 1. . 𝑛 as variables

Initialize 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 with Solve-LP({})
Repeat

         Remove a node with best 𝑓 from 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡: (𝑓, 𝑥, 𝒞)
         If 𝑥 are all integer valued, return (𝑓, 𝑥)

         Choose a variable 𝑥𝑖 that is not integer valued and add two nodes 

Solve-LP(𝒞 ∪ {𝑥𝑖 = 0}) and Solve-LP(𝒞 ∪ {𝑥𝑖 = 1}) to 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡
Until 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is empty

Get a feasible integer solution ො𝑥 based on 𝑥, update current best ( ҧ𝑓, ҧ𝑥)
If ҧ𝑓 ≤ 𝑓 + 𝜖, return ( ҧ𝑓, ҧ𝑥)



Branch and Bound for MILP

 For MILP
 BnB: For each integer variable, branching a node by 

considering 𝑥𝑖 ≤ 𝑥𝑖  and 𝑥𝑖 ≥ 𝑥𝑖  where 𝑥𝑖 is a non-
integer value

 Standard BnB has already been integrated into 
existing (M)ILP solvers in Cplex and Gurobi

 Extension: Branch and Cut
 On top of branch and bound, use cutting planes (which are 

essentially linear constraints) to separate current non-
integer solution and integer solutions
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Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Column Generation

 In kidney exchange: too many edges and cycles

 Even solving the relaxed LPs is challenging

 Too many variables (cycle-based formulation) or constraints 

(edge-based formulation)
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Column Generation for Solving LPs

 Start with a restricted LP containing only a small 

number of columns (variables, i.e., cycles)

 Repeatedly add columns until an optimal solution to 

this partially formulated LP is an optimal solution to 

the original LP
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max
𝑥



𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′



Column Generation

 𝐶′ = {124, 256}, solution?

 Add 347 to 𝐶′

 𝐶′ = 124, 256,347 , solution?
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max
𝑥



𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

How to determine which 

cycle to add to 𝐶′? 
(Pricing Problem)



Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based 

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules
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max
𝑥



𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

min
𝑦



𝑣∈𝑉

𝑦𝑣

s.t. σ𝑣∈𝑐 𝑦𝑣 ≥ 𝑤𝑐, ∀𝑐 ∈ 𝐶′
𝑦𝑣 ≥ 0

Dual LP

Optimal dual solution {𝑦𝑣
∗}



Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based 

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules
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2
Q: Which cycle should be 

added?



BnB + Column Generation for Cyble-Based ILP Formulation

 Use BnB to solve the ILP

 When solving a LP relaxation, use column generation
 1. Start with a small number of cycles (variables)

 2. Solve the LP with the subset of cycles

 3. Check if a cycle can be added to the subset to improve the 
objective function (the most). If so, add it to the subset and go 
back to 2
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max
𝑥



𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Similar ideas can be applied to edge-based ILP



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Discussion for Extensions (optional)
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Discussion for Extensions

 Real-world settings can be much more complex than 

what the basic model describes
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Deal with Uncertainty

 Uncertainty always exists in practice

 Which part of the basic model can be extended to 

consider uncertainty in real-world settings?
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Deal with Uncertainty

 How do we deal with uncertainty?

 Probabilistic

 Compute expectation

 Non-probabilistic

 Maximin Criterion (Wald's Maximin Model)

 Minimax Regret Criterion
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A Simple Example

 Uncertainty in the existence of some edges

 Maximin: Maximize the worst case utility 

(Conservative)

 Solution under the maximin paradigm:
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max
𝑥∈𝑋

min
u∈𝑈(𝑥)

𝑓(𝑥, 𝑢)

Ignore the uncertain edges



Minimax regret

 Minimize maximum regret (Less conservative)

 Let ሚ𝑓 𝑥, 𝑢 = 𝑓 𝑥, 𝑢  ∀𝑥, 𝑢 ∈ 𝑈(𝑥) and ሚ𝑓 𝑥, 𝑢 =
𝑀, ∀𝑥, 𝑢 ∉ 𝑈(𝑥)
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min
𝑥∈𝑋

max
u∈𝑈(𝑥)

𝑓 𝑥∗ 𝑢 , 𝑢 − 𝑓(𝑥, 𝑢)

min
𝑥∈𝑋

𝑣

s.t. 𝑣 ≥ ሚ𝑓 𝑥∗ 𝑢 , 𝑢 − ሚ𝑓(𝑥, 𝑢), ∀𝑢 ∈ 𝑈

May still use column generation!



Discussion for Extensions

 What AI methods and paradigms have we learned so 

far? Can we leverage them to deal with problems in 

kidney exchange?

 LP, MILP

 Linear Regression, Kernel Regression, Decision Trees, Neural 

Networks

 Multi-armed Bandit, Monte Carlo Tree Search, Markov 

Decision Process, Reinforcement Learning

 Game theory, Stackelberg security games, Human Behavior 

Modeling
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Reference and Related Work

 Clearing algorithms for barter exchange markets: 

Enabling nationwide kidney exchanges

 FutureMatch: Combining Human Value Judgments and 

Machine Learning to Match in Dynamic 

Environments [Extended version]

 Position-Indexed Formulations for Kidney Exchange 

[Extended version]

 Optimizing Kidney Exchange with Transplant Chains: 

Theory and Reality
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https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
https://dl.acm.org/doi/pdf/10.1145/1250910.1250954
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15.pdf
http://www.cs.cmu.edu/~sandholm/futurematch.aaai15%20with%20appendix.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016_EC_CAMERA_READY.pdf
http://www.cs.cmu.edu/~sandholm/hierarchy.ec2016PlusExtraMaterial.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf
http://www.cs.cmu.edu/~sandholm/www/chains.aamas12.pdf


Linear Program Duality

 Dual problem of an LP: also a linear program

 Each dual variable corresponds to a constraint in primal LP
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Strong duality holds (if feasible and bounded)

 Primal and dual have the same optimal objective value

 The dual of the dual of a problem is itself
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

Strong duality: 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

4/9/2024Fei Fang51

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

𝑐𝑇𝑥∗ = 𝐴𝑇𝑦∗ 𝑇
𝑥∗ = 𝑦∗𝑇𝐴𝑥∗ = 𝑦∗𝑇 𝐴𝑥∗

≤ 𝑦∗𝑇𝑏



Write the Dual of an LP
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Maximize Minimize

ith constraint ≤ ith variable ≥ 0 

ith constraint ≥ ith variable ≤ 0

ith constraint = ith variable unrestricted 

jth variable ≥ 0 jth constraint ≥ 

jth variable ≤ 0 jth constraint ≤ 

jth variable unrestricted jth constraint =



Linear Program Duality

 Let LP-1 denote the original LP, LP-2 denote the dual of LP-1, 
and LP-3 denote the dual of LP-2. Then LP-1 and LP-3 are the 
same (or can be converted to each other with variable 
substitution)
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min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

max
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≤ 𝑐

Lp-1 Lp-2

min
𝑦+,𝑦−,𝑧

𝑏𝑇𝑦+ − 𝑏𝑇𝑦−

s.t. 𝐴𝑇𝑦+ − 𝐴𝑇𝑦− + 𝑧 = 𝑐
𝑦+, 𝑦−, 𝑧 ≥ 0

Lp-2 (Standard form)

max
𝑤

𝑐𝑇𝑤

s.t. 𝐴𝑤 ≤ 𝑏𝑇

𝐴𝑤 ≤ −𝑏𝑇

𝑤 ≤ 0

LP-3

𝑦 = 𝑦+ − 𝑦−

dual

𝑥 = 𝑤



Proof of strong duality theorem

 Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. Then exactly 
one of the following two statements is true
 I. There exists an 𝑥 ∈ ℝ𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0

 II. There exists a 𝑦 ∈ ℝ𝑚 such that 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0

 Proof: 

 If (I) is true, i.e., 𝐴𝑥 = 𝑏 holds for some 𝑥. If 𝐴𝑇𝑦 ≥ 0 for some 𝑦, then 
𝑏𝑇𝑦 = 𝐴𝑥 𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 ≥ 𝑥𝑇𝟎 = 0. So (I)(II) cannot both be true. 

 If (I) is false, then define 𝐶 = {𝑞 ∈ ℝ𝑚: ∃𝑥 ≥ 0, 𝐴𝑥 = 𝑞}. We know 𝑏 ≠ 𝐶. 
Notice that 𝐶 is convex. From separating hyperplane theorem, we know 
for some 𝑦 ∈ ℝ𝑚\𝟎 s.t. 𝑞𝑇𝑦 ≥ 0 ∀𝑞 ∈ 𝐶 and 𝑏𝑇𝑦 < 0. Then we can 
show that for this 𝑦, 𝐴𝑇𝑦 ≥ 0. If not, i.e., if 𝐴𝑇𝑦 < 0, then choose any 𝑞 ∈
𝐶, and choose any 𝑥 ≥ 0 such that 𝐴𝑥 = 𝑞, we have 0 ≤ 𝑞𝑇𝑦 =
𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 < 𝑥𝑇𝟎 = 0. Contradiction. So this 𝑦 

satisfies 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0. Therefore (II) is true.

 So exactly one of (I) and (II ) is true
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Proof of strong duality theorem

 Second variant of Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 

𝑏 ∈ ℝ𝑚. Then system 𝐴𝑥 ≤ 𝑏 has a solution if and 

only if 𝜆𝑇𝑏 ≥ 0 holds for all 𝜆 that satisfies 𝜆 ≥ 0 and 
𝜆𝑇𝐴 = 0
 Proof: 

 If 𝐴𝑥 ≤ 𝑏 has a solution, denote the solution as 𝑥∗. If 𝜆 ≥ 0 and 
𝜆𝑇𝐴 = 0, then 𝜆𝑇𝑏 ≥ 𝜆𝑇 𝐴𝑥∗ = 𝜆𝑇𝐴 𝑥∗ = 0

 If 𝐴𝑥 ≤ 𝑏 does not have a solution, then 𝐴𝑥+ − 𝐴𝑥− + 𝑧 =
𝑏, 𝑥+, 𝑥−, 𝑧 ≥ 0 does not have a solution (otherwise you can easily 

construct a solution for 𝐴𝑥 ≤ 𝑏). By Farkas’ lemma, there exists a 𝜆 

such that [𝐴 − 𝐴 𝐼]𝑇𝜆 ≥ 0 and 𝑏𝑇𝜆 < 0. Then for this 𝜆, we know 

𝐴𝑇𝜆 = 0 (and therefore 𝜆𝑇𝐴 = 0) and 𝜆 ≥ 0
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Proof of strong duality theorem

 Suppose the primal has an optimal solution 𝑥∗, leading to optimal value 
f ∗ = 𝑐𝑇𝑥∗, (𝑦∗, 𝑔∗ = 𝑏𝑇𝑦∗) is the optimal solution and the optimal value of 
the dual, and 𝑓∗ > 𝑔∗. Then for any 𝜖 > 0,  we know that ∄𝑦, 𝑏𝑇𝑦 ≥ 𝑔∗ +

𝜖, 𝐴𝑇𝑦 ≤ 𝑐, i.e., 
𝐴𝑇

−𝑏𝑇 𝑦 ≤
𝑐

−𝑔∗ − 𝜖  does not have a solution. Based on 

the variant of the Farkas’ lemma, there exists a 𝜆 ∈ ℝ𝑛+1 satisfying 𝜆 ≥ 0, 

𝜆𝑇 𝐴𝑇

−𝑏𝑇 = 0, and 𝜆𝑇
𝑐

−𝑔∗ − 𝜖 < 0. Write this 𝜆 as 𝜆 =
𝜆1

𝜆2
 where 𝜆1 ∈

ℝ𝑛, 𝜆2 ∈ ℝ, 𝜆1 ≥ 0, 𝜆2 ≥ 0. 

 If 𝜆2 = 0, then 𝜆1
𝑇𝐴𝑇 = 0, 𝜆1

𝑇𝑐 < 0, 𝜆1 ≥ 0. According to the variant of the 
Farkas’ lemma, 𝐴𝑇𝑦 ≤ 𝑐 should not have a solution. But 𝑦∗ is a solution of 
the dual and therefore 𝐴𝑇𝑦∗ ≤ 𝑐. Contradiction.

 If 𝜆2 > 0, then we can scale every the parameters in the problem so that 
𝜆2 = 1. Then 𝜆1

𝑇𝐴𝑇 = 𝑏𝑇 and 𝜆1
𝑇𝑐 < 𝑔∗ + 𝜖. Therefore 𝜆1 is a feasible 

solution of the primal and has a corresponding objective value lower than 
𝑔∗ + 𝜖. Since primal is minimization, we have 𝑓∗ ≤ 𝑐𝑇𝜆1 < 𝑔∗ + 𝜖. 
According to weak duality theorem, 𝑓∗ ≥ 𝑔∗. So 𝑔∗ ≤ 𝑓∗ < 𝑔∗ + 𝜖 for any 
𝜖 > 0. Then the only possibility is 𝑓∗ = 𝑔∗.
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Column Generation for Linear Programs

 Column generation is an approach to solving large-
scale linear programs with a massive number of 
variables

 Recall:

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

 Optimal solution is at a vertex

 Simplex algorithm: Iteratively move to a neighboring vertex
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏



Column Generation for Linear Programs

 Consider LP in the following form (all LPs can be 

converted into this form)

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

If a variable , say 𝑧 is unrestricted in 

the original problem, then introduce 

two non-negative variables 𝑧+ and 𝑧− 

substitute 𝑧 with 𝑧+ − 𝑧−



Column Generation for Linear Programs

 If 𝑛 ≫ 𝑚, many variables will be zero at the optimal 

solution

 What if 𝑛 ≪ 𝑚? Then the dual problem would have a 

lot of zero-valued variables. We can then try to solve 

the dual problem using column generation, which is 

called constraint generation.
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Why? The optimal solution is at a vertex. A vertex in the feasible space (which is 

a subset of ℝ𝑛) is determined by 𝑛 equalities. We can get at most 𝑚 equalities 

from boundary hyperplanes of constraints in 𝐴𝑥 ≤ 𝑏. So we need to use at least 

𝑛 − 𝑚 boundary lines of the inequality constraints 𝑥 ≥ 0, which means those 

corresponding variables are 0.



Column Generation for Linear Programs

 Column generation: Iteratively solve a main problem 

and a subproblem

 Main problem:  The original LP but with a subset of 

variables (assuming all other variables are zero)

 Subproblem: Identify a new variable to be added to 

the subset of variables considered by the main 

problem
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max
𝑥𝑖:𝑖∈𝐿

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Main Problem Subproblem

Find a new variable 𝑥𝑖 

and add 𝑖 to 𝐿



Column Generation for Linear Programs

 What is the goal of the subprolem?

 Add a variable that can increase the objective function the 
most

 Assume the optimal solution with only a set 𝐿 of variables 
considered is 𝑥𝐿

∗, the corresponding optimal dual solution is 𝑦𝐿
∗

 The new variable chosen, say 𝑥𝑖, should have the highest 
“reduced cost”, calculated as 𝑐𝑖 − 𝐴𝑖

𝑇𝑦𝐿
∗ where 𝐴𝑖 is the 𝑖th 

column of 𝐴, i.e., coefficients w.r.t. to 𝑥𝑖. If the highest reduced 
cost is non-positive, then no variable will be added, 𝑥𝐿

∗ is the 
optimal solution of the original problem with all variables
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Dual LP



Reduced Cost Explained

 Reduced cost is an important quantity in LP

 First, convert the LP into “canonical form” by adding slack variables 
𝑥𝑛+1, … , 𝑥𝑛+𝑚

 Assume we choose a set of “basic variables” from {1. . 𝑛 + 𝑚} of 
size 𝑚, called 𝐽. Set all variables not in 𝐽 as 0. The constraints will 
then be simplified to constraints w.r.t. basic variables only. Then solve 
this linear system with the 𝑚 basic variables and 𝑚 constraints. The 
solution corresponds to a vertex of the feasible region of the LP in 
the canonical form shown above. Subselect 𝑥1, … , 𝑥𝑛 from the 
solution + the zero-valued non-basic variables lead to a vertex of 
the feasible region of the original LP.
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max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0



Reduced Cost Explained

 Formally, denote the new coefficient matrix with slack 

variables as ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

 Let ሚ𝐴𝐽 be the submatrix of ሚ𝐴 containing only columns 

corresponding to variables in 𝐽

 Then 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽 represents a 

vertex of the feasible region of the following LP
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max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥∈ℝ𝑛+𝑚

ǁ𝑐𝑇𝑥

s.t. ሚ𝐴𝑥 = 𝑏

𝑥 ≥ 0



Reduced Cost Explained

 Given 𝑥 = (𝑥1, … 𝑥𝑛+𝑚) with 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽

 Consider adjusting 𝑥 to 𝑥′ by setting 𝑥𝑗
′ = 𝛼 > 0 for some 𝑗 ∉

𝐽 while ensuring 𝑥𝑖
′ = 0 ∀𝑖 ∉ 𝐽, 𝑖 ≠ 𝑗 and ሚ𝐴𝑥′ = 𝑏, 𝑥′ ≥ 0, i.e., 

introducing one variable to the current basic variable set

 All 𝑥𝑖 , 𝑖 ∈ 𝐽 has to change accordingly

 Denote 𝑥𝐽
′ = 𝑥𝐽 + 𝛼𝑑𝐽, then

ሚ𝐴𝑥′ = 𝑏 ⇒ ሚ𝐴𝐽(𝑥𝐽 + 𝛼𝑑𝐽) + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ ሚ𝐴𝐽
ሚ𝐴𝐽

−1𝑏 + 𝛼𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ 𝛼 ሚ𝐴𝐽𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 0

⇒ 𝑑𝐽 = − ሚ𝐴𝐽
−1 ሚ𝐴𝑗
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Reduced Cost Explained

 If 𝑗 ∈ 1. . 𝑛 , the new objective value is 

𝑓 𝑥′ = ǁ𝑐𝑇𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼( ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽)

 Rewritten as 𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗 where 

ҧ𝑐𝑗 = ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽 = ǁ𝑐𝑗 − ǁ𝑐𝐽

𝑇 ሚ𝐴𝐽
−1 ሚ𝐴𝑗

Therefore 𝑓 𝑥′ > ǁ𝑐𝑇𝑥 if ҧ𝑐𝑗 > 0
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

For 𝑗 ∈ {1. . 𝑛}, ҧ𝑐𝑗 is called reduced cost



Reduced Cost Explained

 If ҧ𝑐𝑗  is non-positive for all non-basic variables of a vertex 

corresponding to basic variable set 𝐽, then the vertex is 

the optimal solution

 If ҧ𝑐𝑗 is positive for some 𝑗, then moving from 𝑥 to 𝑥′ can 

lead to a higher objective value, the higher the value of ҧ𝑐𝑗 , 

the higher the increase rate. The Simplex algorithm move 

towards the neighboring vertex with the highest ҧ𝑐𝑗
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𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗

ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗



Reduced Cost Explained

 If 𝑥∗ ∈ ℝ𝑛+𝑚 is the optimal solution of the primal LP in 
canonical form, and it corresponds to a set of basis 𝐽, then 
consider the corresponding optimal dual solution 𝑦∗ ∈
ℝ𝑚

 According to complementary slackness, if 𝑥𝑗 is in 𝐽, then the 

corresponding dual constraint is tight, i.e., 𝐴𝑗
𝑇𝑦∗ = 𝑐𝑗 if 𝑗 ∈ {1. . 𝑛} 

and 𝑦𝑗−𝑛
∗ = 0 if 𝑗 ∈ {𝑛 + 1, … , 𝑛 + 𝑚}

 Together with the fact ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

, we have 

ሚ𝐴𝐽
𝑇𝑦∗ = ǁ𝑐𝐽

 We can conclude: at optimal solution, ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗 

can be rewritten as ҧ𝑐𝑗 = 𝑐𝑗 − 𝐴𝑗
𝑇𝑦∗ for 𝑗 ∈ {1. . 𝑛}
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Reduced Cost Explained

 Assume that after you solved an LP and get 𝑥∗ and 

the corresponding 𝑦∗, you are asked to add a new 

variable 𝑥𝑗 to the LP with coefficient 𝑐𝑗 and matrix 

column 𝐴𝑗

 𝑥∗ still corresponds to a vertex in the augmented LP, 

but it may not be the optimal solution

 We need to check if we introduce 𝑗 to the basis, 

whether the objective value will increase

 This can be done by directly checking the reduced 

cost
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Subproblem and Reduced Cost

 Now consider the column generation process. 

 It can be viewed as add variables one by one.

 Again, whether and how much a new variable 𝑥𝑗 will 

improve the objective value depends on its reduced 

cost, computed as 𝑐𝑖 − 𝐴𝑖
𝑇𝑦𝐿

∗ where 𝑦𝐿
∗ is the optimal 

dual solution (without slack variables) before 𝑥𝑗 is 

added
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