
Reminder

 PRA6 due 4/16

 HW6 due 4/25

 Course project presentation 4/23 and 4/25

 Come to OH for discussions!
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Case Study: Optimizing Kidney Exchange
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Instructor: Fei Fang
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Recall: 0-1 Knapsack

 0-1 Knapsack

 Maximum weight = 10

 How to select items to maximize total value?
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Items 1 2 3 4 5

Weight 5 4 2 6 7

Value 4 3 6 9 5

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Recall: LP Relaxation

 LP relaxation of an MILP or BIP is the LP with the 

same linear constraints
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ ℤ, 𝑖 ∈ 𝐽𝑧

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ

MILP
LP Relaxation

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ [0,1]

max
𝑥

𝑐𝑇𝑥

s.t. 𝐺𝑥 ≤ ℎ
𝑥𝑖 ∈ 0,1 , ∀𝑖

BIP LP Relaxation



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Learning Objectives

 For the kidney exchange problems, briefly describe

 Significance/Motivation

 Task being tackled, i.e., what is being 

predicted/estimated/prescribed 

 Data usage, i.e., what data is used and how it is processed

 Domain-specific considerations

 AI method used

 Evaluation process and criteria

 Describe Branch and Bound and Column Generation 

methods
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Kidney Exchange
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Kidney Exchange Model

 Given directed graph 𝐺 = (𝑉, 𝐸), where each node 
represent a patient-donor pair, and an edge 〈𝑢, 𝑣〉 means 
donor of node 𝑢 can give one kidney to patient of node 𝑣

 The clearing problem: Find a set of disjoint cycles with 
length ≤ 𝐿 so as to maximize some objective function, 
e.g., total number of patients matched
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What would be a reasonable 𝐿?



Poll 1: Kidney Exchange

 Given the graph below, what is the maximum number 

of patients that can get a kidney through kidney 

exchange assuming the length of each cycle should be 

less than or equal to 3?

 A: 3

 B: 6

 C: 7

 D: 8

 E: None of the above

 F: I don’t know
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Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?
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Hint: enumerate all the cycles



Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the number of patients matched

 Decision variables?

 Constraints?

 Objective function?
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max
𝑥

෍

𝑐

𝑥𝑐𝑙𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Hint: enumerate all the cycles



Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?
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Cycle-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight if each edge has a weight?

 Decision variables?

 Constraints?

 Objective function?

4/9/2024Fei Fang13

1

2

4

6

3

5

7

8

max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

𝑤𝑐: total weight of the cycle 𝑐

Max cardinality case is just when 

all weight = 1

𝑤𝑒



Cycle-Based ILP Formulation

 Limitation: Can only solve for a problem with a few 

hundred patients
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How to improve scalability?



Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?
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Edge-Based ILP Formulation

 Find a set of disjoint cycles with length ≤ 𝐿 so as to 
maximize the total weight

 Decision variables?

 Constraints?

 Objective function?
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Hint: Use flow conservation constraints

max
𝑦

෍

𝑒

𝑦𝑒𝑤𝑒

s.t. σ𝑒∈𝑣→ 𝑦𝑒 − σ𝑒∈→𝑣 𝑦𝑒 = 0, ∀𝑣 ∈ 𝑉

෍

𝑒∈𝑣→

𝑦𝑒 ≤ 1, ∀𝑣 ∈ 𝑉

𝑦𝑒 ∈ 0,1 , ∀𝑒

෍

𝑒∈𝑃

𝑦𝑒 ≤ 𝐿 − 1, ∀𝑃 ∈

{Acyclic paths with length 𝐿}

𝑤𝑒

𝑦𝑒: whether edge 𝑒 will be selected



Complexity of the Clearing Problem

 When 𝐿 = 2, the clearing problem can be solved in 

polynomial time

 Satisfy total unimodulaity, can solve the LP relaxation directly

 The clearing problem with 2 < 𝐿 < +∞ is NP-

complete
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max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐



Complexity of the Clearing Problem

 When 𝐿 = +∞, i.e., no length constraint, the clearing 

problem can be solved in polynomial time (maximum 

weight bipartite matching, Hungarian Maximum 

Matching Algorithm)
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How would max length make a difference?

 Significantly better solutions can be obtained by just 

allowing cycles of length 3 instead of allowing 2-cycles 

only. In practice, a cycle length cap of 3 is typically 

used.
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Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to 

donate a kidney to any needy candidate in the pool 

without a candidate patient?
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Does not scale when 𝐿 is too large.



Kidney Exchange with Chains

 What if an altruist donor enters the pool offering to 

donate a kidney to any needy candidate in the pool 

without a candidate patient?
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Weight=0

Does not scale when 𝐿 is too large.



How would max length make a difference?
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With UNOS data



How would max length make a difference?
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With UNOS data



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Improve the scalability



Recall: Depth-First Search for BIP
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𝑎

𝑏 𝑐

𝑥1 = 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

Cannot expand to this gray node because the constraint is violated

𝑥4 = 0 1 0 1 0 1 0 1

𝑥1 = 0

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Recall: Depth-First Search for BIP

 Can we prune the branches and make search more 

efficient?
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𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

𝑓 𝑔

𝑥3 = 0 1

ℎ 𝑖

0 1

𝑥4 = 0 1 0 1 0 1 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}

Estimate upper bound!



Upper Bound (if maximization): LP Relaxation
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𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Upper Bound (if maximization): LP Relaxation
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𝑎

𝑏 𝑐

𝑥1 = 0 1

𝑑 𝑒

𝑥2 = 0 1

max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ 0,1 , 𝑖 = 1. . 5

𝑥1 = 0
𝑥2 = 1



Branch and Bound for BIP

 Branch and Bound overview (assuming maximization)

 Heuristic search

 Use optimal objective value of LP relaxation (upper bound) 

as the heuristic function

 Always expand the node with the best upper bound first 

(poly-time computable)

 Terminate early when best upper bound of remaining nodes 

is worse than the current best solution
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Branch and Bound for BIP: Example
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max 4𝑥1 + 3𝑥2 + 6𝑥3 + 9𝑥4 + 5𝑥5

s.t.5𝑥1 + 4𝑥2 + 2𝑥3 + 6𝑥4 + 7𝑥5 ≤ 10
𝑥𝑖 ∈ {0,1}



Branch and Bound for BIP

 Solve-LP(𝒞) returns (𝑓, 𝑥), the optimal objective 

value and the optimal solution for the LP relaxation 

of the original problem with additional constraints 𝒞
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Algorithm: Branch and Bound for BIP

Input: A BIP with 𝑥𝑖 , 𝑖 = 1. . 𝑛 as variables

Initialize 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 with Solve-LP({})
Repeat

         Remove a node with best 𝑓 from 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡: (𝑓, 𝑥, 𝒞)
         If 𝑥 are all integer valued, return (𝑓, 𝑥)

         Choose a variable 𝑥𝑖 that is not integer valued and add two nodes 

Solve-LP(𝒞 ∪ {𝑥𝑖 = 0}) and Solve-LP(𝒞 ∪ {𝑥𝑖 = 1}) to 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡
Until 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is empty

Get a feasible integer solution ො𝑥 based on 𝑥, update current best ( ҧ𝑓, ҧ𝑥)
If ҧ𝑓 ≤ 𝑓 + 𝜖, return ( ҧ𝑓, ҧ𝑥)



Branch and Bound for MILP

 For MILP
 BnB: For each integer variable, branching a node by 

considering 𝑥𝑖 ≤ ෥𝑥𝑖  and 𝑥𝑖 ≥ ෥𝑥𝑖  where ෥𝑥𝑖 is a non-
integer value

 Standard BnB has already been integrated into 
existing (M)ILP solvers in Cplex and Gurobi

 Extension: Branch and Cut
 On top of branch and bound, use cutting planes (which are 

essentially linear constraints) to separate current non-
integer solution and integer solutions
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Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Extension and Discussion
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Column Generation

 In kidney exchange: too many edges and cycles

 Even solving the relaxed LPs is challenging

 Too many variables (cycle-based formulation) or constraints 

(edge-based formulation)
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Column Generation for Solving LPs

 Start with a restricted LP containing only a small 

number of columns (variables, i.e., cycles)

 Repeatedly add columns until an optimal solution to 

this partially formulated LP is an optimal solution to 

the original LP
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max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′



Column Generation

 𝐶′ = {124, 256}, solution?

 Add 347 to 𝐶′

 𝐶′ = 124, 256,347 , solution?
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max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

How to determine which 

cycle to add to 𝐶′? 
(Pricing Problem)



Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based 

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules
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max
𝑥

෍

𝑐∈𝐶′

𝑥𝑐𝑤𝑐

s.t. σ𝑐∈𝐶′:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉

𝑥𝑐 ∈ 0,1 , ∀𝑐 ∈ 𝐶′

min
𝑦

෍

𝑣∈𝑉

𝑦𝑣

s.t. σ𝑣∈𝑐 𝑦𝑣 ≥ 𝑤𝑐, ∀𝑐 ∈ 𝐶′
𝑦𝑣 ≥ 0

Dual LP

Optimal dual solution {𝑦𝑣
∗}



Pricing Problem for Kidney Exchange

 Goal: Find a new cycle to be added (for cycle-based 

formulation)

 Rely on dual LP to get the dual value of each vertex

 Ideally a feasible path with highest total dual value

 Depth-first search with several pruning rules
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Q: Which cycle should be 

added?



BnB + Column Generation for Cyble-Based ILP Formulation

 Use BnB to solve the ILP

 When solving a LP relaxation, use column generation
 1. Start with a small number of cycles (variables)

 2. Solve the LP with the subset of cycles

 3. Check if a cycle can be added to the subset to improve the 
objective function (the most). If so, add it to the subset and go 
back to 2
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max
𝑥

෍

𝑐

𝑥𝑐𝑤𝑐

s.t. σ𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

Similar ideas can be applied to edge-based ILP



Outline

 Basic Kidney Exchange Problem

 Branch and Bound

 Column Generation

 Discussion for Extensions (optional)
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Discussion for Extensions

 Real-world settings can be much more complex than 

what the basic model describes
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Deal with Uncertainty

 Uncertainty always exists in practice

 Which part of the basic model can be extended to 

consider uncertainty in real-world settings?
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Deal with Uncertainty

 How do we deal with uncertainty?

 Probabilistic

 Compute expectation

 Non-probabilistic

 Maximin Criterion (Wald's Maximin Model)

 Minimax Regret Criterion
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A Simple Example

 Uncertainty in the existence of some edges

 Maximin: Maximize the worst case utility 

(Conservative)

 Solution under the maximin paradigm:
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max
𝑥∈𝑋

min
u∈𝑈(𝑥)

𝑓(𝑥, 𝑢)

Ignore the uncertain edges



Minimax regret

 Minimize maximum regret (Less conservative)

 Let ሚ𝑓 𝑥, 𝑢 = 𝑓 𝑥, 𝑢  ∀𝑥, 𝑢 ∈ 𝑈(𝑥) and ሚ𝑓 𝑥, 𝑢 =
𝑀, ∀𝑥, 𝑢 ∉ 𝑈(𝑥)
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min
𝑥∈𝑋

max
u∈𝑈(𝑥)

𝑓 𝑥∗ 𝑢 , 𝑢 − 𝑓(𝑥, 𝑢)

min
𝑥∈𝑋

𝑣

s.t. 𝑣 ≥ ሚ𝑓 𝑥∗ 𝑢 , 𝑢 − ሚ𝑓(𝑥, 𝑢), ∀𝑢 ∈ 𝑈

May still use column generation!



Discussion for Extensions

 What AI methods and paradigms have we learned so 

far? Can we leverage them to deal with problems in 

kidney exchange?

 LP, MILP

 Linear Regression, Kernel Regression, Decision Trees, Neural 

Networks

 Multi-armed Bandit, Monte Carlo Tree Search, Markov 

Decision Process, Reinforcement Learning

 Game theory, Stackelberg security games, Human Behavior 

Modeling
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Reference and Related Work

 Clearing algorithms for barter exchange markets: 

Enabling nationwide kidney exchanges

 FutureMatch: Combining Human Value Judgments and 

Machine Learning to Match in Dynamic 

Environments [Extended version]

 Position-Indexed Formulations for Kidney Exchange 

[Extended version]

 Optimizing Kidney Exchange with Transplant Chains: 

Theory and Reality
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Linear Program Duality

 Dual problem of an LP: also a linear program

 Each dual variable corresponds to a constraint in primal LP
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Strong duality holds (if feasible and bounded)

 Primal and dual have the same optimal objective value

 The dual of the dual of a problem is itself
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

Weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗

Strong duality: 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP



Linear Program Duality

 Prove weak duality: 𝑐𝑇𝑥∗ ≤ 𝑏𝑇𝑦∗
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min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 = 𝑐
𝑦 ≥ 0

Primal LP

𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛,𝑚 < 𝑛 𝑦 ∈ ℝ𝑚

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏

Dual LP

𝑐𝑇𝑥∗ = 𝐴𝑇𝑦∗ 𝑇
𝑥∗ = 𝑦∗𝑇𝐴𝑥∗ = 𝑦∗𝑇 𝐴𝑥∗

≤ 𝑦∗𝑇𝑏



Write the Dual of an LP
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Maximize Minimize

ith constraint ≤ ith variable ≥ 0 

ith constraint ≥ ith variable ≤ 0

ith constraint = ith variable unrestricted 

jth variable ≥ 0 jth constraint ≥ 

jth variable ≤ 0 jth constraint ≤ 

jth variable unrestricted jth constraint =



Linear Program Duality

 Let LP-1 denote the original LP, LP-2 denote the dual of LP-1, 
and LP-3 denote the dual of LP-2. Then LP-1 and LP-3 are the 
same (or can be converted to each other with variable 
substitution)
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min
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

max
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≤ 𝑐

Lp-1 Lp-2

min
𝑦+,𝑦−,𝑧

𝑏𝑇𝑦+ − 𝑏𝑇𝑦−

s.t. 𝐴𝑇𝑦+ − 𝐴𝑇𝑦− + 𝑧 = 𝑐
𝑦+, 𝑦−, 𝑧 ≥ 0

Lp-2 (Standard form)

max
𝑤

𝑐𝑇𝑤

s.t. 𝐴𝑤 ≤ 𝑏𝑇

𝐴𝑤 ≤ −𝑏𝑇

𝑤 ≤ 0

LP-3

𝑦 = 𝑦+ − 𝑦−

dual

𝑥 = 𝑤



Proof of strong duality theorem

 Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. Then exactly 
one of the following two statements is true
 I. There exists an 𝑥 ∈ ℝ𝑛 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0

 II. There exists a 𝑦 ∈ ℝ𝑚 such that 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0

 Proof: 

 If (I) is true, i.e., 𝐴𝑥 = 𝑏 holds for some 𝑥. If 𝐴𝑇𝑦 ≥ 0 for some 𝑦, then 
𝑏𝑇𝑦 = 𝐴𝑥 𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 ≥ 𝑥𝑇𝟎 = 0. So (I)(II) cannot both be true. 

 If (I) is false, then define 𝐶 = {𝑞 ∈ ℝ𝑚: ∃𝑥 ≥ 0, 𝐴𝑥 = 𝑞}. We know 𝑏 ≠ 𝐶. 
Notice that 𝐶 is convex. From separating hyperplane theorem, we know 
for some 𝑦 ∈ ℝ𝑚\𝟎 s.t. 𝑞𝑇𝑦 ≥ 0 ∀𝑞 ∈ 𝐶 and 𝑏𝑇𝑦 < 0. Then we can 
show that for this 𝑦, 𝐴𝑇𝑦 ≥ 0. If not, i.e., if 𝐴𝑇𝑦 < 0, then choose any 𝑞 ∈
𝐶, and choose any 𝑥 ≥ 0 such that 𝐴𝑥 = 𝑞, we have 0 ≤ 𝑞𝑇𝑦 =
𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 𝑥𝑇 𝐴𝑇𝑦 < 𝑥𝑇𝟎 = 0. Contradiction. So this 𝑦 

satisfies 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0. Therefore (II) is true.

 So exactly one of (I) and (II ) is true
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Proof of strong duality theorem

 Second variant of Farkas’ lemma: Let 𝐴 ∈ ℝ𝑚×𝑛 and 

𝑏 ∈ ℝ𝑚. Then system 𝐴𝑥 ≤ 𝑏 has a solution if and 

only if 𝜆𝑇𝑏 ≥ 0 holds for all 𝜆 that satisfies 𝜆 ≥ 0 and 
𝜆𝑇𝐴 = 0
 Proof: 

 If 𝐴𝑥 ≤ 𝑏 has a solution, denote the solution as 𝑥∗. If 𝜆 ≥ 0 and 
𝜆𝑇𝐴 = 0, then 𝜆𝑇𝑏 ≥ 𝜆𝑇 𝐴𝑥∗ = 𝜆𝑇𝐴 𝑥∗ = 0

 If 𝐴𝑥 ≤ 𝑏 does not have a solution, then 𝐴𝑥+ − 𝐴𝑥− + 𝑧 =
𝑏, 𝑥+, 𝑥−, 𝑧 ≥ 0 does not have a solution (otherwise you can easily 

construct a solution for 𝐴𝑥 ≤ 𝑏). By Farkas’ lemma, there exists a 𝜆 

such that [𝐴 − 𝐴 𝐼]𝑇𝜆 ≥ 0 and 𝑏𝑇𝜆 < 0. Then for this 𝜆, we know 

𝐴𝑇𝜆 = 0 (and therefore 𝜆𝑇𝐴 = 0) and 𝜆 ≥ 0
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Proof of strong duality theorem

 Suppose the primal has an optimal solution 𝑥∗, leading to optimal value 
f ∗ = 𝑐𝑇𝑥∗, (𝑦∗, 𝑔∗ = 𝑏𝑇𝑦∗) is the optimal solution and the optimal value of 
the dual, and 𝑓∗ > 𝑔∗. Then for any 𝜖 > 0,  we know that ∄𝑦, 𝑏𝑇𝑦 ≥ 𝑔∗ +

𝜖, 𝐴𝑇𝑦 ≤ 𝑐, i.e., 
𝐴𝑇

−𝑏𝑇 𝑦 ≤
𝑐

−𝑔∗ − 𝜖  does not have a solution. Based on 

the variant of the Farkas’ lemma, there exists a 𝜆 ∈ ℝ𝑛+1 satisfying 𝜆 ≥ 0, 

𝜆𝑇 𝐴𝑇

−𝑏𝑇 = 0, and 𝜆𝑇
𝑐

−𝑔∗ − 𝜖 < 0. Write this 𝜆 as 𝜆 =
𝜆1

𝜆2
 where 𝜆1 ∈

ℝ𝑛, 𝜆2 ∈ ℝ, 𝜆1 ≥ 0, 𝜆2 ≥ 0. 

 If 𝜆2 = 0, then 𝜆1
𝑇𝐴𝑇 = 0, 𝜆1

𝑇𝑐 < 0, 𝜆1 ≥ 0. According to the variant of the 
Farkas’ lemma, 𝐴𝑇𝑦 ≤ 𝑐 should not have a solution. But 𝑦∗ is a solution of 
the dual and therefore 𝐴𝑇𝑦∗ ≤ 𝑐. Contradiction.

 If 𝜆2 > 0, then we can scale every the parameters in the problem so that 
𝜆2 = 1. Then 𝜆1

𝑇𝐴𝑇 = 𝑏𝑇 and 𝜆1
𝑇𝑐 < 𝑔∗ + 𝜖. Therefore 𝜆1 is a feasible 

solution of the primal and has a corresponding objective value lower than 
𝑔∗ + 𝜖. Since primal is minimization, we have 𝑓∗ ≤ 𝑐𝑇𝜆1 < 𝑔∗ + 𝜖. 
According to weak duality theorem, 𝑓∗ ≥ 𝑔∗. So 𝑔∗ ≤ 𝑓∗ < 𝑔∗ + 𝜖 for any 
𝜖 > 0. Then the only possibility is 𝑓∗ = 𝑔∗.
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Column Generation for Linear Programs

 Column generation is an approach to solving large-
scale linear programs with a massive number of 
variables

 Recall:

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

 Optimal solution is at a vertex

 Simplex algorithm: Iteratively move to a neighboring vertex
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏



Column Generation for Linear Programs

 Consider LP in the following form (all LPs can be 

converted into this form)

 𝑐 ∈ ℝ𝑛

 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

If a variable , say 𝑧 is unrestricted in 

the original problem, then introduce 

two non-negative variables 𝑧+ and 𝑧− 

substitute 𝑧 with 𝑧+ − 𝑧−



Column Generation for Linear Programs

 If 𝑛 ≫ 𝑚, many variables will be zero at the optimal 

solution

 What if 𝑛 ≪ 𝑚? Then the dual problem would have a 

lot of zero-valued variables. We can then try to solve 

the dual problem using column generation, which is 

called constraint generation.
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Why? The optimal solution is at a vertex. A vertex in the feasible space (which is 

a subset of ℝ𝑛) is determined by 𝑛 equalities. We can get at most 𝑚 equalities 

from boundary hyperplanes of constraints in 𝐴𝑥 ≤ 𝑏. So we need to use at least 

𝑛 − 𝑚 boundary lines of the inequality constraints 𝑥 ≥ 0, which means those 

corresponding variables are 0.



Column Generation for Linear Programs

 Column generation: Iteratively solve a main problem 

and a subproblem

 Main problem:  The original LP but with a subset of 

variables (assuming all other variables are zero)

 Subproblem: Identify a new variable to be added to 

the subset of variables considered by the main 

problem
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max
𝑥𝑖:𝑖∈𝐿

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Main Problem Subproblem

Find a new variable 𝑥𝑖 

and add 𝑖 to 𝐿



Column Generation for Linear Programs

 What is the goal of the subprolem?

 Add a variable that can increase the objective function the 
most

 Assume the optimal solution with only a set 𝐿 of variables 
considered is 𝑥𝐿

∗, the corresponding optimal dual solution is 𝑦𝐿
∗

 The new variable chosen, say 𝑥𝑖, should have the highest 
“reduced cost”, calculated as 𝑐𝑖 − 𝐴𝑖

𝑇𝑦𝐿
∗ where 𝐴𝑖 is the 𝑖th 

column of 𝐴, i.e., coefficients w.r.t. to 𝑥𝑖. If the highest reduced 
cost is non-positive, then no variable will be added, 𝑥𝐿

∗ is the 
optimal solution of the original problem with all variables
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

Dual LP



Reduced Cost Explained

 Reduced cost is an important quantity in LP

 First, convert the LP into “canonical form” by adding slack variables 
𝑥𝑛+1, … , 𝑥𝑛+𝑚

 Assume we choose a set of “basic variables” from {1. . 𝑛 + 𝑚} of 
size 𝑚, called 𝐽. Set all variables not in 𝐽 as 0. The constraints will 
then be simplified to constraints w.r.t. basic variables only. Then solve 
this linear system with the 𝑚 basic variables and 𝑚 constraints. The 
solution corresponds to a vertex of the feasible region of the LP in 
the canonical form shown above. Subselect 𝑥1, … , 𝑥𝑛 from the 
solution + the zero-valued non-basic variables lead to a vertex of 
the feasible region of the original LP.
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max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0



Reduced Cost Explained

 Formally, denote the new coefficient matrix with slack 

variables as ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

 Let ሚ𝐴𝐽 be the submatrix of ሚ𝐴 containing only columns 

corresponding to variables in 𝐽

 Then 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽 represents a 

vertex of the feasible region of the following LP
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max
𝑥1,….,𝑥𝑛+𝑚

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛

s.t. 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 + 𝑥𝑛+1 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 + 𝑥𝑛+2 = 𝑏2

…
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 + 𝑥𝑛+𝑚 = 𝑏𝑚

𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1. . 𝑛 + 𝑚}

max
𝑥∈ℝ𝑛+𝑚

ǁ𝑐𝑇𝑥

s.t. ሚ𝐴𝑥 = 𝑏

𝑥 ≥ 0



Reduced Cost Explained

 Given 𝑥 = (𝑥1, … 𝑥𝑛+𝑚) with 𝑥𝐽 = ሚ𝐴𝐽
−1𝑏 and 𝑥𝑗 = 0, ∀𝑗 ∉ 𝐽

 Consider adjusting 𝑥 to 𝑥′ by setting 𝑥𝑗
′ = 𝛼 > 0 for some 𝑗 ∉

𝐽 while ensuring 𝑥𝑖
′ = 0 ∀𝑖 ∉ 𝐽, 𝑖 ≠ 𝑗 and ሚ𝐴𝑥′ = 𝑏, 𝑥′ ≥ 0, i.e., 

introducing one variable to the current basic variable set

 All 𝑥𝑖 , 𝑖 ∈ 𝐽 has to change accordingly

 Denote 𝑥𝐽
′ = 𝑥𝐽 + 𝛼𝑑𝐽, then

ሚ𝐴𝑥′ = 𝑏 ⇒ ሚ𝐴𝐽(𝑥𝐽 + 𝛼𝑑𝐽) + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ ሚ𝐴𝐽
ሚ𝐴𝐽

−1𝑏 + 𝛼𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 𝑏

⇒ 𝛼 ሚ𝐴𝐽𝑑𝐽 + 𝛼 ሚ𝐴𝑗 = 0

⇒ 𝑑𝐽 = − ሚ𝐴𝐽
−1 ሚ𝐴𝑗
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Reduced Cost Explained

 If 𝑗 ∈ 1. . 𝑛 , the new objective value is 

𝑓 𝑥′ = ǁ𝑐𝑇𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼( ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽)

 Rewritten as 𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗 where 

ҧ𝑐𝑗 = ǁ𝑐𝑗 + ǁ𝑐𝐽
𝑇𝑑𝐽 = ǁ𝑐𝑗 − ǁ𝑐𝐽

𝑇 ሚ𝐴𝐽
−1 ሚ𝐴𝑗

Therefore 𝑓 𝑥′ > ǁ𝑐𝑇𝑥 if ҧ𝑐𝑗 > 0
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max
𝑥

𝑐𝑇𝑥

s.t. 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

min
𝑦

𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ≥ 𝑐
𝑦 ≥ 0

For 𝑗 ∈ {1. . 𝑛}, ҧ𝑐𝑗 is called reduced cost



Reduced Cost Explained

 If ҧ𝑐𝑗  is non-positive for all non-basic variables of a vertex 

corresponding to basic variable set 𝐽, then the vertex is 

the optimal solution

 If ҧ𝑐𝑗 is positive for some 𝑗, then moving from 𝑥 to 𝑥′ can 

lead to a higher objective value, the higher the value of ҧ𝑐𝑗 , 

the higher the increase rate. The Simplex algorithm move 

towards the neighboring vertex with the highest ҧ𝑐𝑗
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𝑓 𝑥′ = ǁ𝑐𝑇𝑥 + 𝛼 ҧ𝑐𝑗

ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗



Reduced Cost Explained

 If 𝑥∗ ∈ ℝ𝑛+𝑚 is the optimal solution of the primal LP in 
canonical form, and it corresponds to a set of basis 𝐽, then 
consider the corresponding optimal dual solution 𝑦∗ ∈
ℝ𝑚

 According to complementary slackness, if 𝑥𝑗 is in 𝐽, then the 

corresponding dual constraint is tight, i.e., 𝐴𝑗
𝑇𝑦∗ = 𝑐𝑗 if 𝑗 ∈ {1. . 𝑛} 

and 𝑦𝑗−𝑛
∗ = 0 if 𝑗 ∈ {𝑛 + 1, … , 𝑛 + 𝑚}

 Together with the fact ሚ𝐴 = [𝐴 𝐼], ǁ𝑐 =
𝑐
𝟎

, we have 

ሚ𝐴𝐽
𝑇𝑦∗ = ǁ𝑐𝐽

 We can conclude: at optimal solution, ҧ𝑐𝑗 = ǁ𝑐𝑗 − ǁ𝑐𝐽
𝑇 ሚ𝐴𝐽

−1 ሚ𝐴𝑗 

can be rewritten as ҧ𝑐𝑗 = 𝑐𝑗 − 𝐴𝑗
𝑇𝑦∗ for 𝑗 ∈ {1. . 𝑛}
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Reduced Cost Explained

 Assume that after you solved an LP and get 𝑥∗ and 

the corresponding 𝑦∗, you are asked to add a new 

variable 𝑥𝑗 to the LP with coefficient 𝑐𝑗 and matrix 

column 𝐴𝑗

 𝑥∗ still corresponds to a vertex in the augmented LP, 

but it may not be the optimal solution

 We need to check if we introduce 𝑗 to the basis, 

whether the objective value will increase

 This can be done by directly checking the reduced 

cost
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Subproblem and Reduced Cost

 Now consider the column generation process. 

 It can be viewed as add variables one by one.

 Again, whether and how much a new variable 𝑥𝑗 will 

improve the objective value depends on its reduced 

cost, computed as 𝑐𝑖 − 𝐴𝑖
𝑇𝑦𝐿

∗ where 𝑦𝐿
∗ is the optimal 

dual solution (without slack variables) before 𝑥𝑗 is 

added
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