Reminder

- PRA6 due 4/16
- HW6 due 4/25
- Course project presentation 4/23 and 4/25
 - Schedule is posted
 - Come to OH for discussions!
- Course project final report due 5/2

Artificial Intelligence Methods for Social Good Lecture 24: Common Challenges in AI for Social Good Projects

> 17-537 (9-unit) and 17-737 (12-unit) Fei Fang <u>feifang@cmu.edu</u>

Outline

- Typical Pipeline for AI for Social Good Projects
- Common Challenges and Practical Guide by Stage
 - Problem Formulation
 - Method Development
 - Evaluation & Deployment
- Q&A + Discussion

What are the steps need to be taken to work on an Al project aimed for social impact?

Immersion in the domains (Problem Definition)

- Crucial to get a critical understanding of the problems, constraints and datasets
- Goal: come up with a clearly-defined problem

Immersion in the domains (Data Collection)

Collect and clean the data needed

Build a predictive model

Using machine learning or domain expert input

Develop a prescriptive algorithm

- Assist decision making
- Suggest actions to take

- Evaluate our models and algorithms in the field
- Learn key limitations of our models and algorithms
- Improve the models and algorithms
- Prepare for larger-scale deployment

Sustainably deploy the AI-based system

 Collect feedback and measure long-term impact on society

What are challenges in these stages and how to tackle them?

Outline

- Typical Pipeline for AI for Social Good Projects
- Common Challenges and Practical Guide by Stage
 - Problem Formulation
 - Method Development
 - Evaluation & Deployment
- Q&A + Discussion

Common Challenges in Problem Formulation Stage

- How to find problems to work on?
- How to formulate them as problems that AI can solve?
- How to get the data needed?

- Choose a domain that one is familiar with and some existing efforts that can have a significant social impact
- Identify pain points in the current practice: steps that currently
 - (I) heavily rely on human experience
 - (2) requires a huge amount of human efforts
 - or (3) is done in an ad-hoc way but is crucial to the outcomes

- Identify pain points that can be tackled with AI
 - Understand what AI is capable of doing in general:
 - Prediction and estimation
 - Clustering
 - Suggest actions or facilitate decision-making
 - Generate content (text, image) given instructions

• ...

Review existing literature to understand how AI has been used to tackle pain points

- Envision the benefit and impact an AI-based tool can bring
 - Save human hours, less cognitive burden, better understanding, better outcomes
- Think about the cost and ethical implications of using an Al-based tool
 - Cost of training humans, negative outcomes due to misuse

- For AI researchers: Immersion in the domains is important
 - Crucial to get a critical understanding of the problems, constraints, and datasets
 - Build interdisciplinary partnerships
 - Understand the challenges from the perspective of domain experts
 - Reach out to stakeholders actively (via emails, phone calls, and remote meetings...)
 - Discuss with stakeholders, including the impacted community
 - May cite domain experts' words with their consent in the publication

Example: Food Rescue

HI AT&T LTE

Today between 11:08am and 2:30pm

Pick up from La Prima Espresso (CMU) at Porter Hall – Squirrel Hill North

Special Instructions:

Please enter through the rear parking lot via Watson Street, use the yellow door.

Travel to Womanspace East 2000 Fifth Ave – Uptown

Special Instructions:

Use entrance on Jumonville - go thru iron

11:54 AM

@ 1 61%

Close

____.

18

How to Formulate Them as Problems that AI can Solve?

- Determine what type of problem it is
 - Prediction and estimation
 - Clustering
 - Suggest actions or facilitate decision-making
 - Generate content (text, image) given instructions
- Choose the corresponding formulation

How to Get Data Needed?

- Determine what data is readily available
 - Data shared by collaborators
- Determine what kind of data is needed and how much is needed
- Investigate what data can be collected?
 - Collect data through e.g., crowdsourcing, human subject experiments
 - Get data from publicly available sources

How to Get Data Needed?

- Some publicly available data sources
 - Landsat-9 (USGS)
 - Google Earth Engine (Google)
 - Earthdata (NASA)
 - Google Public Data Explorer (Google)
 - AWS Open Data Registry (Amazon)
 - Global Health Observatory data (WHO)
 - World Bank Open Data (World Bank)

How to get the data needed?

Preprocess the data

- Understand data limitations and check if necessary to preprocess the data
- Typical limitations that can be mitigated through preprocessing:
 - Missing entries
 - Discuss with domain experts to see if there is a way to interpolate the missing data
 - Noise in data
 - Discuss with domain experts to understand what kind of noise exist and whether it is possible to denoise

Example: Wildlife Corridor Design

Acquisition cost

- Tax records
- Information on conserved lands
- Other information: water body, urban parcel, etc

Resistance

- Geographical information and other landscape features
 - Grizzly bears: vegetation, human development, road density
 - Wolverines: snow cover, housing development, forest edge

Common Challenges in Problem Formulation Stage

- How to find problems to work on?
- How to formulate them as problems that AI can solve?
- How to get the data needed?
- Discussion: Any other challenges (in problem formulation stage) you faced or would like to learn more about?

Outline

- Typical Pipeline for AI for Social Good Projects
- Common Challenges and Practical Guide by Stage
 - Problem Formulation
 - Method Development
 - Evaluation & Deployment
- Q&A + Discussion

Common Challenges in Method Development Stage

- How to choose or develop the right AI method for the problem, while accounting for domain-specific considerations (e.g., practical constraints on computing resources or runtime, uncertainties and noise)?
- Decompose the problem into smaller tasks, choose the right AI method for each task based on the type of the task
 - Prediction task: Predict or estimate certain values
 - Prescription task: Suggest actions or facilitate decisionmaking

How to choose or develop the right AI method for the problem?

Prediction task

- Select features based on available data, intuition and discussion with domain experts
- Start with existing Machine Learning methods based on data type
 - Basic discrete or continuous-valued data: Linear Regression, Random Forest, Gaussian Process, Neural Network, XGBoost
 - Image data: ResNet+refinement
 - Text data: BERT/RoBERTa/GPT3+refinement, leverage ChatGPT API
 - Graph data: Graph neural networks
- Train and evaluate the model
 - Metrics for regression or classification
 - Domain-specific metrics

Example: Food Rescue

- Model: neural network
- Evaluate:
 - > AUC

28

Domain specific metric: hit ratio

How to choose or develop the right AI method for the problem?

Prediction task

- Identify domain-specific challenges or limitations of existing methods
- Develop methods to tackle those challenges

Learning from Limited Data

- Collaborators often do not have enough data required by modern AI techniques
- Training data is too small → cannot generalize well to unseen data
- How to deal with limited data?
 - Try to collect more data: Active learning to get labels for selected data points
 - Revisit the feasibility of the problem
 - Come up with methods that can learn from limited data

Learning from Limited Data

- Use less data-greedy approaches
 - Ensemble methods based on decision trees
 - Build models based on domain knowledge with a very small number of parameters to be learned from data
- Transfer learning
 - Learn from a relevant domain with rich data, apply (part of) the trained model in the target domain [Jean et al., 2016, Shen et al. 2018]
- Semi-supervised learning
 - Leverage abundant unlabeled data [Ma et al. 2018, Fan et al. 2018]

Learning from Limited Data

- Dimension reduction
 - Use some low-dimensional statistics such as the count of different pixel types as features instead of images [You et al., 2017]
 - Cut a long sequence into several shorter sequences [Zhou et al., 2019]
- Deal with missing features of some data points instead of dropping those data points
 - Fill the entries with imputation, e.g., deductive imputation, mean/median imputation
 - Model correlations between data points [Yan et al. 2013]

Tackling Biased Data

- Noisy labels
 - Sometimes one-sided: e.g., positive labels are indeed positive, but negative labels could be positive
- Learning from data with noisy labels
 - Only use data points with high confidence to train the model [Zhou et al., 2019]
 - Denoise data based on domain knowledge [Shankar et al, 2019]
 - Use learning algorithms designed for noisy labels, e.g., [Natarajan et al., 2013, Cheng et al. 2020]
 - Use noise correction algorithm, e.g., CORES² loss (Cheng et al. 2021) or peer loss (Liu and Guo 2020)-based noise correction algorithm

Tackling Biased Data

Distributional shift

- Machine learning model is developed using dataset D sampled from some distribution p(x) but will be evaluated on data D' following some other distribution q(x)
 - E.g., Rich data in some geographical regions only in citizen science

Deal with distributional shift

 Factor the distribution shift into the model construction phase [Chen and Gomes]

• Change loss function to
$$\mathbb{E}_{(x,y)\sim p}[L\frac{q(x)}{p(x)}]$$

Tackling Biased Data

- Label imbalance
 - E.g., A lot more positive labels than negative labels
- Deal with label imbalance
 - Over-sampling/down-sampling in training data to get a balanced data set
 - Sample additional points based on domain knowledge
 - Collect soft labels from domain experts [Gurumurthy et al., 2018]

How to choose or develop the right AI method for the problem?

Prescription task

- Determine what actions are available, whether it is sequential decision making, how many decision-makers
- Candidate AI methods for prescription
 - Mathematical programming
 - Game theoretic modeling
 - Multi-armed bandit (MAB) or restless MAB
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Imitation Learning
- Address computational issues

Example: Ferry Protection

Common Challenges in Method Development Stage

- How to choose or develop the right AI method for the problem, while accounting for domain-specific considerations (e.g., practical constraints on computing resources or runtime, uncertainties and noise)?
- Discussion: Any other challenges (in method development stage) you faced or would like to learn more about?

Outline

- Typical Pipeline for AI for Social Good Projects
- Common Challenges and Practical Guide by Stage
 - Problem Formulation
 - Method Development
 - Evaluation & Deployment
- Q&A + Discussion

Common Challenges in Evaluation and Deployment Stage

- How to run a field experiment?
- How to evaluate the impact?
- How to get the solution deployed in a scalable and sustainable fashion?

How to run a field experiment?

- Need to convince the stakeholders first
 - Show to stakeholders the potential impact of Al-based solution through in-lab simulations with real-world data (dry-run)
 - Explain the AI-based solution -- ideally make the AI solution interpretable such that all the stakeholders can understand and trust the AI-based solution
 - Small-scale pilot test, learn key limitations, get feedback from stakeholders, and improve solution

Randomized control trial (a.k.a. A/B testing)

How to evaluate the impact?

- Determine the stakeholders who might be impacted
 Not just the direct users, but also other stakeholders
- For each class of stakeholder, design evaluation metrics and ways to collect data to evaluate
 - Survey, interviews
 - Quantitative measures

How to get the solution deployed in a scalable and sustainable fashion?

- Cloud service
 - Example: food rescue (AWS)
- Integrate into the software or devices stakeholders are already using (through API, file format that can be directly imported into their software or devices)
 - Example: PAWS (Microsoft, SMART)

Example: Ferry Protection

- Deployed since 2013
- US Coast Guard evaluation
 - Point defense to zone defense
 - Increased randomness
 - Mock attacker
- Patrollers feedback
 - More dynamic (speed change, U-turn)
- Professional mariners' observation
 - Apparent increase in Coast Guard patrols

Outline

- Typical Pipeline for AI for Social Good Projects
- Common Challenges and Practical Guide by Stage
 - Problem Formulation
 - Method Development
 - Evaluation & Deployment
- Q&A + Discussion

45

Questions about course project?

Discussion

Share your ideas that you think others might consider for course project

From your discussion sections of PRAs

References

- Di Chen and Carla P Gomes. Bias reduction via end-to-end shift learning: Application to citizen science. AAAI-19
- Cheng, Hao, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. "Learning with instance-dependent label noise: A sample sieve approach." arXiv preprint arXiv:2010.02347 (2020).
- Natarajan, N., Dhillon, I. S., Ravikumar, P., & Tewari, A. (2013, December). Learning with noisy labels. In NIPS (Vol. 26, pp. 1196-1204).
- Shiv Shankar, Daniel Sheldon, Tao Sun, John Pickering, and Thomas G. Dietterich. Three-quarter sibling regression for denoising observational data, IJCAI-19
- Swaminathan Gurumurthy, Lantao Yu, Chenyan Zhang, Yongchao Jin, Weiping Li, Xiaodong Zhang, Fei Fang. Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. In COMPASS-18
- Shi, Zheyuan Ryan, Claire Wang, and Fei Fang. Artificial intelligence for social good: A survey. arXiv preprint arXiv:2001.01818 (2020).

References

- Yujie Fan, Yiming Zhang, Yanfang Ye, and Xin Li. Automatic opioid user detection from twitter: Transductive ensemble built on different meta-graph based similarities over heterogeneous information network. In IJCAI-18
- Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. "Combining satellite imagery and machine learning to predict poverty." Science 353, no. 6301 (2016): 790-794.
- Tengfei Ma, Cao Xiao, Jiayu Zhou, and Fei Wang. Drug similarity integration through attentive multi-view graph auto-encoders. In AAAI-18
- Tiancheng Shen, Jia Jia, Guangyao Shen, Fuli Feng, Xiangnan He, Huanbo Luan, Jie Tang, Thanassis Tiropanis, Tat-Seng Chua, and Wendy Hall. Cross-domain depression detection via harvesting social media. In AAAI-18
- Junchi Yan, Yu Wang, Ke Zhou, Jin Huang, Chunhua Tian, Hongyuan Zha, and Weishan Dong. Towards effective prioritizing water pipe replacement and rehabilitation, IJCAI-13
- Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. Deep gaussian process for crop yield prediction based on remote sensing data. In AAAI-17
- Yuxi Zhou, Shenda Hong, Junyuan Shang, Meng Wu, Qingyun Wang, Hongyan Li, and Junqing Xie. K-margin-based residual-convolution-recurrent neural network for atrial fibrillation detection. In IJCAI-19

References

- Cheng, H.; Zhu, Z.; Li, X.; Gong, Y.; Sun, X.; and Liu, Y.
 2021. Learning with Instance-Dependent Label Noise: A Sample Sieve Approach. In ICLR.
- Liu, Y.; and Guo, H. 2020. Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates. In ICML'20

Backup Slides

- What problem to work on?
 - I) Start from interest in a domain/real-world problem
 - E.g., Found something unsatisfactory from your volunteer experience?
 Found an interesting real-world problem from news articles?
 - Brainstorm: How that AI can help

What problem to work on?

53

- > 2) Start from interest in a certain technique
 - E.g., Read/implemented state-of-the-art methods in computer vision?
 Had research experience in natural language processing?
 - Brainstorm: What real-world problems can the technique potentially be used for?

4/16/2024

What problem to work on?

> 3) Start from a domain/technique combination

	Cognitive modeling	0	0	0	0	0	1	0	0	1	
	Constraint satisfaction and optimization	2	5	31	48	20	26	9	59	173	
Cognitive systems Computer vision Game playing and interactive entertainment		1	2	2	7	2	3	1	5	20	150
		3	8	12	20	6	12	7	19	79	
		0	1	0	1	0	0	0	0	2	
	Game theory and economic paradigms	3	5	30	6	11	31	1	16	78	120
	Human-AI collaboration	1	8	11	23	9	6	6	17	69	
anb	Human computation and crowd sourcing	1	5	6	20	45	12	11	15	98	90
hnio	Heuristic search and optimization	1	3	11	14	8	8	6	26	69	
[ec]	Knowledge representation and reasoning	0	0	0	5	3	2	0	1	11	
-	Multiagent systems	2	7	47	19	16	22	8	31	122	
	Machine learning	12	27	65	174	53	65	36	92	460	60
	Natural language processing	4	12	6	18	10	10	5	3	58	
	Planning, routing, and scheduling	9	4	48	43	14	28	31	84	210	
	Robotics	3	4	12	10	4	5	4	10	47	-30
	Reasoning under uncertainty	4	3	30	23	8	6	6	13	78	
	Total	40	78	225	344	155	177	90	253	1176	
Agriculture Education Healthcare public safety planning Total O Environmental sustainability Public safety propriation Total O Environmental sustainability Formation manipulation provide the proprior of the public safety planning propriation total O Environmental sustainability Social care and urban planning total O											

Fei Fang

- What problem to work on?
 - 4) Start from an existing work or established challenges
 - E.g., Go through existing work that applies AI technique to tackle societal challenges
 - □ IJCAI/AAAI special tracks, AI for Social Good workshops/symposiums
 - □ COMPASS, AIES, etc
 - □ Lists of previous course projects (Lec I)
 - E.g., Check Kaggle competitions
 - Brainstorm: Is there room for improvement?
 - □ Existing model missing some critical practical aspects?
 - □ A new algorithm can lead to better performance?
 - Brainstorm: Is there a similar problem that can use similar framework?

Common Challenges in AI for Social Good Problems

- Learning from Limited Data
- Tackling Biased Data
- Stackelberg Leadership Models
- Privacy-preserving ML
- Human in the Loop

Typical Frameworks

 First identify a concrete social good problem that AI methods can potentially help

• Option I: Data-centric

- Look for real-world data and clean/Preprocess data
- Identify or Propose AI algorithm that can be applied to the data
- Evaluate algorithm, summarize/visualize result
- Discuss insights and lessons learned
- Example: "Detecting Mining Sites from Satellite Imagery Using Faster R-CNN"
- Option 2: Model/algorithm-centric
 - Mathematically model the challenge
 - Propose AI-based solution
 - Theoretically analyze of the model/algorithm
 - Implement the algorithm and test on simulated or real-world instance
 - Example: "Optimizing Inspection Strategy to Reduce Air Pollution"
 - For Ph.D. students: recommended to talk to your Ph.D. advisor and choose a project